Arthrokinematics: Difference between revisions

(removed pubmed)
No edit summary
 
(24 intermediate revisions by 7 users not shown)
Line 3: Line 3:


'''Top Contributors''' - {{Special:Contributors/{{FULLPAGENAME}}}}      
'''Top Contributors''' - {{Special:Contributors/{{FULLPAGENAME}}}}      
</div>  
</div>
<br> ''''''Arthrokinematics''' '''refers to the movement of joint surfaces.


<br>  
== Introduction ==
''''Arthrokinematics' '''refers to the movement of joint surfaces. Arthrokinematics differs from [[Osteokinematics]] - in general Osteokinematics means joint movement and Arthrokinematics joint surface motion.<ref>Malloy P, Wichman DM, Nho SJ. Clinical Biomechanics of the Hip Joint. InHip Arthroscopy and Hip Joint Preservation Surgery 2022 Aug 2 (pp. 17-26). Cham: Springer International Publishing. [https://link.springer.com/referenceworkentry/10.1007/978-1-4614-6965-0_2]</ref>  


The angular movement of bones in the human body occurs as a result of a combination of rolls, spins, and slides.  
The angular movement of bones in the human body occurs as a result of a combination of rolls, spins, and slides.  


A '''roll '''is a rotary movement, one bone rolling on another. <gallery>
# A '''roll '''is a rotary movement, one bone rolling on another.  
Arthrokinematics.png</gallery>
# A '''spin '''is a rotary movement, one body spinning on another.
A '''spin '''is a rotary movement, one body spinning on another.  
# A '''slide '''is a translatory movement, sliding of one joint surface over another.
<gallery mode="nolines" widths="600" heights="600">
File:Arthrokinematics.png
</gallery>
The video below gives a good 2 minute outline.


A '''slide '''is a translatory movement, sliding of one joint surface over another.  
{{#ev:youtube|https://www.youtube.com/watch?v=yzozxABe9S4|width}}<ref>My life Choice Osteokinematics VS Arthrokinematics Available from:https://www.youtube.com/watch?v=yzozxABe9S4 (accessed 3.5.2021)</ref>


<br><ref>https://www.youtube.com/watch?v=YokLbe0v29E</ref>
== Types of Arthrokinematic Motion ==
{{#ev:youtube|YokLbe0v29E|width}}The '''convex-concave rule''' is the basis for determining the direction of the mobilizing force when joint mobilization gliding techniques are used to increase a certain joint motion.


The direction in which sliding occurs depends on whether the moving surface is ''concave ''or ''convex''.&nbsp;
# '''Joint Play''':  movement not under voluntary control (passive), can not be achieved by active muscular contraction.
# '''Component Movement''': involuntary obligatory joint motion occurring outside the joint accompanies active motion – i.e. - scapulohumeral rhythm


'''Concave '''= hollowed or rounded inward
== Why Arthrokinematics  Matters ==
The '''convex-concave rule''' is the basis for determining the direction of the mobilizing force when [[Joint Classification|joint]] mobilization gliding techniques are used to increase a certain joint motion.{{#ev:youtube|wUUSZWtvB6M}}


'''Convex '''= curved or rounded outward  
The direction in which sliding occurs depends on whether the moving surface is concave or convex.&nbsp;
 
* '''Concave '''= hollowed or rounded inward
* '''Convex '''= curved or rounded outward  


If the moving joint surface is CONVEX, sliding is in the OPPOSITE direction of the angular movement of the bone.  
If the moving joint surface is CONVEX, sliding is in the OPPOSITE direction of the angular movement of the bone.  
Line 29: Line 37:
If the moving joint surface is CONCAVE, sliding is in the SAME direction as the angular movement of the bone. <gallery>
If the moving joint surface is CONCAVE, sliding is in the SAME direction as the angular movement of the bone. <gallery>
Convex-concave_rule1.png
Convex-concave_rule1.png
</gallery><br>  
</gallery>  


Examples:  
Examples:  


{| width="40%" cellspacing="1" cellpadding="1" border="0" align="right" class="FCK__ShowTableBorders"
*'''Glenohumeral articulation: '''concave glenoid fossa articulates with the convex [[Humerus|humeral head]]
|-
| align="right" |
{{#ev:youtube|JbAy747rdig|200}} <ref>Jennifer Reft. Joint mobility, arthokinematics. Available from: http://www.youtube.com/watch?v=JbAy747rdig[last accessed 15/12/12]</ref>
 
|}
 
*'''Glenohumeral articulation: '''''concave ''glenoid fossa articulates with the ''convex ''humeral head
 
''Glenohumeral posterior glide increases flexion and internal rotation''
 
''Glenohumeral anterior glide increases extension and external rotation''
 
<br>
 
*'''Humeroradial articulation: '''''convex ''capitulum articulates with the ''concave ''radial head
 
''Dorsal or posterior glide of the head of radius'' ''increases elbow extension''
 
''Volar or anterior glide of the head of the radius increases elbow flexion''
 
<br>


{| width="40%" cellspacing="1" cellpadding="1" border="0" align="right" class="FCK__ShowTableBorders"
Glenohumeral posterior glide increases flexion and internal rotation
|-
| align="right" |
{{#ev:youtube|NTh7iBToVLE|200}} <ref>tsudpt11. Osteokinematics of the Hip. Available from: http://www.youtube.com/watch?v=NTh7iBToVLE[last accessed 15/12/12]</ref>


|}
Glenohumeral anterior glide increases extension and external rotation 


*'''Hip joint:''' ''concave ''acetabulum articulates with the ''convex ''femoral head
{{#ev:youtube|JbAy747rdig|200}}
* '''Humeroradial articulation: '''convex capitulum articulates with the concave [[Radius|radial]] head
Dorsal or posterior glide of the head of radius increases elbow extension


''Hip posterior glide increases flexion and internal rotation''  
Volar or anterior glide of the head of the radius increases elbow flexion
*'''[[Hip Anatomy|Hip joint]]:''' concave acetabulum articulates with the convex [[Femur|femoral]] head


''Hip anterior glide increases extension and external rotation''
Hip posterior glide increases flexion and internal rotation  


<br> <br> <br> <br> <br> <br>
Hip anterior glide increases extension and external rotation  {{#ev:youtube|NTh7iBToVLE|200}}
*'''Tibiofemoral articulation:''' concave [[Tibia|tibial]] plateaus articulate on the convex femoral condyles


{| width="40%" cellspacing="1" cellpadding="1" border="0" align="right" class="FCK__ShowTableBorders"
Tibiofemoral posterior glide increases flexion
|-
| align="right" |
{{#ev:youtube|EyhiCvWER0Y|200}} <ref>Jennifer Reft. Knee Osteokinematics and Arthokinematics. Available from: http://www.youtube.com/watch?v=EyhiCvWER0Y[last accessed 15/12/12]</ref>


|}
Tibiofemoral anterior glide increases extension {{#ev:youtube|EyhiCvWER0Y|200}}  


*'''Tibiofemoral articulation:''' ''concave ''tibial plateaus articulate on the ''convex ''femoral condyles
*'''Talocrural joint:''' convex talus articulates with the concave mortise (tibia and [[fibula]])


''Tibiofemoral posterior glide increases flexion''
Talocrural dorsal or posterior glide increases dorsiflexion.


''Tibiofemoral anterior glide increases extension''
Talocrural ventral or anterior glide increases plantarflexion. {{#ev:youtube|0R4zRSE_-40|200}}  
 
<br> <br> <br> <br> <br>
 
{| width="40%" cellspacing="1" cellpadding="1" border="0" align="right" class="FCK__ShowTableBorders"
|-
| align="right" |
{{#ev:youtube|0R4zRSE_-40|200}} <ref>DrGlassDPM. Ankle Subtalar Joint Motion Function Explained Biomechanic of the Foot. Available from: http://www.youtube.com/watch?v=0R4zRSE_-40[last accessed 15/12/12]</ref>
 
|}
 
*'''Talocrural joint:''' ''convex ''talus articulates with the ''concave'' mortise (tibia and fibula)
 
''Talocrural dorsal or posterior glide increases dorsiflexion''
 
''Talocrural ventral or anterior glide increases plantarflexion''
 
<br>


== Resources  ==
== Resources  ==


Kisner, C. &amp; Colby, L.A. (2002). Therapeutic Exercise: Foundations and Techniques, 5th ed. F.A. Davis: Philadelphia.<br>
Kisner, C. &amp; Colby, L.A. (2002). Therapeutic Exercise: Foundations and Techniques, 5th ed. F.A. Davis: Philadelphia.
== References  ==


== References ==
References will automatically be added here, see [[Adding References|adding references tutorial]].  
References will automatically be added here, see [[Adding References|adding references tutorial]].  


<references />
<references />
[[Category:Rehabilitation Foundations]]
[[Category:Biomechanics]]

Latest revision as of 13:44, 22 December 2023

Introduction[edit | edit source]

'Arthrokinematics' refers to the movement of joint surfaces. Arthrokinematics differs from Osteokinematics - in general Osteokinematics means joint movement and Arthrokinematics joint surface motion.[1]

The angular movement of bones in the human body occurs as a result of a combination of rolls, spins, and slides.

  1. A roll is a rotary movement, one bone rolling on another.
  2. A spin is a rotary movement, one body spinning on another.
  3. A slide is a translatory movement, sliding of one joint surface over another.

The video below gives a good 2 minute outline.

[2]

Types of Arthrokinematic Motion[edit | edit source]

  1. Joint Play: movement not under voluntary control (passive), can not be achieved by active muscular contraction.
  2. Component Movement: involuntary obligatory joint motion occurring outside the joint accompanies active motion – i.e. - scapulohumeral rhythm

Why Arthrokinematics Matters[edit | edit source]

The convex-concave rule is the basis for determining the direction of the mobilizing force when joint mobilization gliding techniques are used to increase a certain joint motion.

The direction in which sliding occurs depends on whether the moving surface is concave or convex. 

  • Concave = hollowed or rounded inward
  • Convex = curved or rounded outward

If the moving joint surface is CONVEX, sliding is in the OPPOSITE direction of the angular movement of the bone.

If the moving joint surface is CONCAVE, sliding is in the SAME direction as the angular movement of the bone.

Examples:

  • Glenohumeral articulation: concave glenoid fossa articulates with the convex humeral head

Glenohumeral posterior glide increases flexion and internal rotation

Glenohumeral anterior glide increases extension and external rotation

  • Humeroradial articulation: convex capitulum articulates with the concave radial head

Dorsal or posterior glide of the head of radius increases elbow extension

Volar or anterior glide of the head of the radius increases elbow flexion

Hip posterior glide increases flexion and internal rotation

Hip anterior glide increases extension and external rotation

  • Tibiofemoral articulation: concave tibial plateaus articulate on the convex femoral condyles

Tibiofemoral posterior glide increases flexion

Tibiofemoral anterior glide increases extension

  • Talocrural joint: convex talus articulates with the concave mortise (tibia and fibula)

Talocrural dorsal or posterior glide increases dorsiflexion.

Talocrural ventral or anterior glide increases plantarflexion.

Resources[edit | edit source]

Kisner, C. & Colby, L.A. (2002). Therapeutic Exercise: Foundations and Techniques, 5th ed. F.A. Davis: Philadelphia.

References[edit | edit source]

References will automatically be added here, see adding references tutorial.

  1. Malloy P, Wichman DM, Nho SJ. Clinical Biomechanics of the Hip Joint. InHip Arthroscopy and Hip Joint Preservation Surgery 2022 Aug 2 (pp. 17-26). Cham: Springer International Publishing. [1]
  2. My life Choice Osteokinematics VS Arthrokinematics Available from:https://www.youtube.com/watch?v=yzozxABe9S4 (accessed 3.5.2021)