Proprioception: Difference between revisions

(intro)
No edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 2: Line 2:
'''Original Editor '''- The [[Open Physio]] project.  
'''Original Editor '''- The [[Open Physio]] project.  


'''Top Contributors''' - {{Special:Contributors/{{FULLPAGENAME}}}}    
'''Top Contributors''' - {{Special:Contributors/{{FULLPAGENAME}}}} &nbsp;<br>
</div>  
</div>  
== Introduction  ==
== Introduction  ==


'''Proprioception''' is the sense of where one's body is in space. It is critical for meaningful interaction with the environment. Its neurological basis comes primarily from sensory receptors located on your skin, joints, and muscles (muscle spindles with a smaller component from tendon organ afferents, cutaneous receptors and minimal input from joint receptors). These muscle afferents receptors allow identification of limb position and movement via neural signalling of a change in muscle, skin or joint stretch<ref>Suetterlin KJ, Sayer AA. [https://academic.oup.com/ageing/article/43/3/313/16765 Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions.] Age and ageing. 2013 Nov 14;43(3):313-8. Available from: https://academic.oup.com/ageing/article/43/3/313/16765 (last accessed 31.10.19)</ref>. Hence proprioception is basically a continuous loop of feedback between sensory receptors throughout your body and your nervous system. Sensory receptors are located on your skin, joints, and muscles. When moving, our brain senses the effort, force, and heaviness of these actions and positions and responds appropriately, sensing whether the body is moving with&nbsp;the appropriate effort&nbsp;and &nbsp;where the various&nbsp;segments of the body are located in relation to each other.  
'''Proprioception (sense of body positioning in space)''' is an important bodily neuromuscular sense. It falls under our "sixth sense", more commonly known as somatosensation. The term somatosensation (or somatosensory senses) is an all encompassing term which includes the sub-categories of mechanoreception (vibration, pressure, discriminatory touch), thermoreception (temperature), nociception (pain), equilibrioception (balance) and proprioception (sense of positioning and movement).<ref>Ager, A.L.,  Borms, D., Deschepper, L., Dhooghe, R., Dijkhuis, J., Roy, J.S., &  Cools, A.Proprioception and shoulder pain: A Systematic Review. ''J Hand Ther''. 2019 Aug 31. pii: S0894-1130(19)30094-8. doi: 10.1016/j.jht.2019.06.002. </ref> The feedback from all these different sensory components arise from our peripheral nervous system (PNS), and feed information to our central nervous system (CNS), both at the level of the spinal cord (reflexive) and sent to the cerebral cortex for higher processing.<ref>''Guyton AC. Textbook of Medical Physiology. 8th ed. Philadelphia, PA  WB Saunders; 1992.''</ref>


The short video below gives a good insight into what proprioception is and involves.
Proprioception itself can be understood as including various sub-modalities:
{{#ev:youtube|https://www.youtube.com/watch?v=Dzlkz8j-8rg|width}}<ref>W Deloriea Proprioceptors Available from: https://www.youtube.com/watch?v=Dzlkz8j-8rg ( last accessed 30.10.2019)</ref>


=== Causes of Proprioception Impairment ===
'''<u>Joint Position Sense:</u>''' Proprioception is our sense of joint / limb positioning. It is often measured through joint position sense - active joint position sense (AJPS) and passive joint position sense (PJPS). Joint position sense determines the ability of a person to perceive a presented joint angle and then, after the limb has been moved, to actively or passively reproduces the same joint angle<ref name=":1">Riemann, B. L., & Lephart, S.M. (2002). The sensorimotor system, part 1: the physiological basis of functional joint stability. ''Journal of Athletic Training, 37''(1),71-79.</ref> (Clinically measured as a joint matching task).  
Some things can affect proprioception.
* Temporary impairment can come from eg drinking too much alcohol; overdose of vitamin B6 (pyridoxine and pyridoxamine). Most of the impaired function returns to normal shortly after the intake oftoxin returns to normal. Impairment can also be caused by cytotoxicity factors such as Chemotherapy. .


* Age-related changes also affect proprioception. The risk of proprioception loss increases as we age due to a combination of natural age-related changes to the nerves, joints, and muscles.  
'''<u>Kinaesthesia:</u>''' Kinaesthesia (kinaesthesis) is the awareness of motion of the human body (motion sense).<ref>Sherrington CS. On the proprio-ceptive system, especially in its reflex aspect. Brain. 1907;29:467–482.</ref> Sense of movement refers to the ability to appreciate joint movement, including the duration, direction, amplitude, speed, acceleration and timing of movements.<ref name=":1" />


* Injuries or medical conditions that affect the muscles, nerves, and the brain can cause long-term or permanent proprioception impairment. See below
'''<u>Sense of Force:</u>'''  Sense of Force (SoF) is also known as sense of effort / heaviness / tension or the force matching sense. It is the ability to reproduce (or match) a desired level of force one or more times. Sense of force is thought to stem from the afferent feedback of the Golgi Tendon Organs (GTOs) embedded within our tendons, the muscle spindles within our muscles and proprioceptions within our skin.<ref>Hung, Y. J. (2015). Neuromuscular control and rehabilitation of the unstable ankle. ''World Journal of Orthopedics'', ''6''(5), page 434.</ref>
Neurological disorders: eg brain injuries; multiple sclerosis ([[MS Multiple Sclerosis|MS]]); stroke; [[Parkinson's|Parkinson’s]] disease; [[Huntington Disease|Huntington’s]] disease; [[Amyotrophic Lateral Sclerosis (aka ALS or Lou Gehrig’s Disease)|ALS]] (amyotrophic lateral sclerosis)  


Health conditions eg. herniated [[Disc Herniation|disc]]; [[Osteoarthritis|arthritis]]; autism spectrum disorder (ASD); [[diabetes]]; [[Neuropathies|peripheral neuropathy]]  
'''<u>Sense of Change in Velocity (SoV):</u>''' SoV is our ability to detect vibration, derived from oscillating objects placed against the skin.<ref>Gilman, S., ''Joint position sense and vibration sense: anatomical organisation and assessment.''Journal of neurology, neurosurgery, and psychiatry, 2002. '''73'''(5): p. 473-7.</ref> It is believed to travel through the same type of large afferent nerve fibers (Aαβ) as proprioception.<ref>Shakoor, N., A. Agrawal, and J.A. Block, ''Reduced lower extremity vibratory perception in osteoarthritis of the knee.''Arthritis and rheumatism, 2008. '''59'''(1): p. 117-21.</ref>
[[File:Somatosensation.jpg|thumb|464x464px|Somatosensation. Retrieved from: Ager, A.L., Borms, D., Deschepper, L., Dhooghe, R., Dijkhuis, J., Roy, J.S., &  Cools, A.Proprioception and shoulder pain: A Systematic Review. ''J Hand Ther''. 2019 Aug 31. pii: S0894-1130(19)30094-8. doi: 10.1016/j.jht.2019.06.002. ]]


Surgery eg. joint injuries, such as an [[Ankle Sprain|ankle sprain]] or [[Knee|knee sprain]]; joint replacement surgery, such as [[Total Hip Replacement|hip replacement]] or [[Total Knee Arthroplasty|knee replacement]]
Globally, all sub-modalities of proprioception arise from the sum of neural inputs from the joint capsules, ligaments, muscles, tendons, and skin, in a multifaceted system, which influences behavior regulation and motor control of the body.<ref>Blanche, E.I., Bodison, S., Chang, M.C., & Reinoso, G. (2012). Development of the Comprehensive Observations of Proprioception (COP): Validity, Reliability, and Factor Analysis. Am J Occup Ther. 66(6): 691–698. doi:10.5014/ajot.2012.003608.</ref>
* Periodically during growth, mostly during adolescence.
* Increases or drops in bodyweight/size due to fluctuations of fat (liposuction, rapid fat loss, rapid fat gain) and muscle content (Bodybuilding, Anabolic steroids, catabolisis/starvation).  
* New levels of Flexibility, Stretching, and Contortion. A limb's being in a new range of motion never experienced (or at least, not for a long time since youth perhaps) can disrupt one's sense of location of that limb. Possible experiences include these: suddenly feeling that feet or legs are missing from one's mental self-image; needing to look down at one's limbs to be sure they are still there; and falling down while walking, especially when attention is focused upon something other than the act of walking.


* Proprioception is occasionally impaired spontaneously, especially when one is tired. One's body may appear too large or too small, or parts of the body may appear distorted in size. Similar effects can sometimes occur during Epilepsy. These effects are presumed to arise from abnormal stimulation of the part of the parietal cortex of the Brain involved with integrating information from different parts of the body.
Proprioception is critical for meaningful interactions with our surrounding environment. Proprioception helps with the planing of movements, sport performance, playing a musical instrument and ultimately helping us avoid an injury.  


* People who have a limb amputated may still have a confused sense of that limb existence on their body, known as phantom limb syndrome. Phantom sensations can occur as passive proprioceptive sensations of the limb's presence, or more active sensations such as perceived movement, pressure, pain, itching, or temperature. The etiology of the phantom limb phenomenon was disputed in 2006, but some consensus existed in favour of neurological (e.g. neural signal bleed across a preexisting sensory map, over psychological explanations. Phantom sensations and phantom pain may also occur after the removal of body parts other than the limbs, such as after amputation of the breast, extraction of a tooth (phantom tooth pain), or removal of an eye (phantom eye syndrome).
The neurological basis of proprioception comes primarily from sensory receptors (mechanoreceptors and proprioceptors) located in your skin, joints, and muscles (muscle spindles with a smaller component from tendon organ afferents, cutaneous receptors and minimal input from joint receptors). These muscle afferents receptors allow for the identification of limb position and movement via neural signalling of a change in muscle, skin or joint stretch<ref>Suetterlin KJ, Sayer AA. [https://academic.oup.com/ageing/article/43/3/313/16765 Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions.] Age and ageing. 2013 Nov 14;43(3):313-8. Available from: https://academic.oup.com/ageing/article/43/3/313/16765 (last accessed 31.10.19)</ref>. Hence, proprioception is basically a continuous loop of feedforward and feedback inputs between sensory receptors throughout your body and your nervous system.  
* Tinnitus and the attendant hearing frequency-gaps masked by the perceived sounds may cause erroneous proprioceptive information to the balance and comprehension centres of the brain, precipitating mild confusion.


== Assessing Proprioception  ==
A mechanoreceptor is a sensory receptor in your body that responds to mechanical changes of tissues. Different types of mechanoreceptors include   
A proprioception disorder or injury could cause a number of signs and symptoms.  
* Pacinian Corpuscles 
* Meissner's Corpuscles 
* Merkel's Discs 
* Ruffini Corpuscles 
* Golgi Tendon Organs (GTO) 
* Free nerve endings 
There are also mechanoreceptors within the hair and skin.


'''Subjective assessmen'''t should include questions regarding the following
There are four types of mechanoreceptors found within ligamentous tissues. As all the types of mechanoreceptors are myelinated and rapidly transmit sensory information to the CNS.<ref name=":2">Michelson JD, Hutchins C. (1995). Mechanoreceptors in human ankle ligaments. ''The Journal of Bone and Joint Surgery. British Volume'''''77''' (2): 219–24. PMID [https://www.ncbi.nlm.nih.gov/pubmed/7706334 7706334].</ref> 
* balance issues, such as having trouble standing on one foot or frequent falls while walking or sitting
* '''Type I''': (small) Low threshold, slow adapting in both static and dynamic settings;
* uncoordinated movement, such as not being able to walk in a straight line
* '''Type II''': (medium) Low threshold, rapidly adapting in dynamic settings;
* avoiding certain activities, such as climbing stairs or walking on uneven surfaces because of a fear of falling
* '''Type III''': (large) High threshold, slowly adapting in dynamic settings;
'''Objective assessment''' should include observation of the above and the points below
* '''Type IV''': (very small) High threshold pain receptors that communicate injury.
* clumsiness, such as dropping or bumping into things
Type II and Type III mechanoreceptors in particular are believed to be linked to one's sense of proprioception.<ref name=":2" />
* poor postural control, such as slouching or having to place extra weight on a table for balance while sitting
* trouble recognizing your own strength, eg pressing on a pen too hard when writing or not being able to gauge the force needed to pick something up


There are several means by which physiotherapists can assess proprioception, depending on the body part being assessed. The include:
The short video below gives a good insight into the complexities of proprioception.
* [[Romberg Test|Romberg test]]
{{#ev:youtube|https://www.youtube.com/watch?v=Dzlkz8j-8rg|width}}<ref>W Deloriea Proprioceptors Available from: https://www.youtube.com/watch?v=Dzlkz8j-8rg ( last accessed 30.10.2019)</ref>
* Heel-shin. The patient is asked to touch the heel of one foot to the opposite knee and then to drag their heel in a straight line all the way down the front of their shin and back up again. In order to eliminate the effect of gravity in moving the heel down the shin, this test should always be done in the supine position.  
* Ataxia. Best revealed if the examiner's finger is held at the extreme of the patient's reach, and if the examiner's finger is occasionally moved suddenly to a different location.
*Finger—nose—finger test. The patient is asked to alternately touch their nose and the examiner's finger as quickly as possible
*Walking in a straight line
*Distal proprioception test. The tester will move the joints of the hip, knee ankle and big toe up and down while you watch. You then ask the client  to repeat the same movement with your eyes closed.
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;[[Image:Heel - shin.jpg|200x250px]]&nbsp; &nbsp; &nbsp;&nbsp;[[Image:Finger-nose.jpg|200x250px]]&nbsp; &nbsp; &nbsp; &nbsp;[[Image:Limb position.jpg|200x250px]]


== Proprioception vs. Kinesthesia  ==
=== Causes of Proprioception Impairment ===
Poor proprioception at a joint may result in the increased likelihood of an injury.<ref>Anderson, V. B., & Wee, E. (2011). Impaired joint proprioception at higher shoulder elevations in chronic rotator cuff pathology. ''Arch Phys Med Rehabil, 92''(7), 1146-1151. doi:10.1016/j.apmr.2011.02.004</ref> The reason for proprioception impairments are not clear at this time. A decreased sense of proprioception can be caused by localized tissue damage, the presence of edema (swelling) or competitive nociceptive inputs (presence off pain).  


Kinesthesia is another term that is often used interchangeably with proprioception, though use of the term "kinesthesia" can place a greater emphasis on motion.  
Proprioception can be affected by the following factors: 
* Temporary impairment from a compromised state (for example the consumption of [[Alcoholism|alcohol]]).


Some differentiate the kinesthetic sense from proprioception by excluding the sense of equilibrium or balance from kinesthesia. An inner ear infection, for example, might degrade the sense of balance. This would degrade the proprioceptive sense, but not the kinesthetic sense. The affected individual would be able to walk, but only by using the sense of sight to maintain balance; the person would be unable to walk with eyes closed.  
* Age-related changes also affect proprioception. The risk of proprioception loss increases as we age due to a combination of natural age-related changes to the nerves, joints, and muscles.  


Proprioception and kinaesthesia are seen as interrelated and there is considerable disagreement regarding the definition of these terms. Some of this difficulty stems from Sherrington's original description of joint position sense (or the ability to determine where a particular body part exactly is in space) and kinaesthesia (or the sensation that the body part has moved) under a more general heading of proprioception. Clinical aspects of proprioception are measured in tests that measure a subject's ability to detect an externally imposed passive movement, or the ability to reposition a joint to a predetermined position. Often it is assumed that the ability of one of these aspects will be related to another; unfortunately, experimental evidence suggests there is no strong relation between these two aspects. This suggests that, while these components may well be related in a cognitive manner, they seem to be separate physiologically.  
* Injuries or medical conditions that affect the neuromuscular system (muscles, nerves, and the [[cerebellum]], CNS) which can cause long-term or permanent proprioception impairment.
Proprioception impairments have been noted among the following neurological conditions: 
* Brain injuries; multiple sclerosis ([[Multiple Sclerosis (MS)|MS]]); stroke; [[Parkinson's|Parkinson’s]] disease; [[Huntington Disease|Huntington’s]] disease; [[Amyotrophic Lateral Sclerosis |ALS]] (amyotrophic lateral sclerosis)  
* Also health conditions: herniated [[Disc Herniation|disc]]; [[Osteoarthritis|arthritis]]; autism spectrum disorder (ASD); [[diabetes]]; [[Neuropathies|peripheral neuropathy]].
* Post-surgery:  joint replacement surgery, such as [[Total Hip Replacement|hip replacement]] or [[Total Knee Arthroplasty|knee replacement]]
* MSK conditions: ankle sprains, ACL injuries, shoulder dislocations and tendinopathies, whiplash associated disorders (among others).  


Much of the foregoing work is dependent on the notion that proprioception is essentially a feedback mechanism; that is, the body moves (or is moved) and then the information about this is returned to the brain, whereby subsequent adjustments could be made. More recent work into the mechanism of ankle sprains suggests that the role of reflexes may be more limited due to their long latencies (even at the spinal cord level) as ankle sprain events occur in perhaps 100 msec or less. Accordingly, a model has been proposed to include a 'feedforward' component of proprioception where the subject will also have central information about the body's position prior to attaining it.  
== Assessing Proprioception  ==
The measurement of proprioception is presently not well developed. Proprioception can only be confidently measured in a laboratory setting, using complex computer-interfaced equipment. There is presently a lack of valid, reliable and responsive tools and outcome measures to quantify proprioception deficits, in a clinical setting.<ref>Ager, A.L.,Roy, J.S., Roos, M., Belley, A.F., Cools, A., & Hebert, L.J. (2017). Shoulder proprioception: How is it measured and is it reliable? A systematic review. ''J Hand Ther.,''30(2), 221-231. doi: 10.1016/j.jht.2017.05.003.</ref> 


Kinesthesia is a key component in Muscle memory and Hand-eye coordination, and training can improve this sense. The ability to swing a golf club or to catch a ball requires a finely-tuned sense of the position of the joints. This sense needs to become automatic through training to enable a person to concentrate on other aspects of performance, such as maintaining motivation or seeing where other people are.  
If you suspect a proprioception deficit, focus on the following clinical aspects.  


== Learning New Skills  ==
'''Subjective assessment''' should include questions regarding the following:
* Balance issues, such as having trouble standing on one foot or frequent falls while walking or sitting;
* Uncoordinated movement ([[ataxia]]), such as not being able to walk in a straight line, or difficulty reaching for an object;
* The avoidance of certain activities, such as climbing stairs or walking on uneven surfaces because of a fear of falling.
'''Objective assessment''' should include observation of the above and the points below:
* Overal coordination (Reaching tests, Star Excurtion Balance Test, Upper extremity coordination tests);
* Clumsiness, such as dropping or bumping into things;
* Poor postural control, such as slouching or having to place extra weight on a table for balance while sitting;
* Trouble recognizing the appropriate level of muscular strength for a task (for example: pressing on a pen too hard when writing or not being able to gauge the force needed to pick up an object).


Proprioception is what allows someone to learn to walk in complete darkness without losing balance. During the learning of any new skill, sport, or art, it is usually necessary to become familiar with some proprioceptive tasks specific to that activity. Without the appropriate integration of proprioceptive input, an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas; it would be impossible to drive an automobile because a motorist would not be able to steer or use the foot pedals while looking at the road ahead; a person could not touch type or perform ballet; and people would not even be able to walk without watching where they put their feet.  
There are a few clinical tests Physiotherapists can use to assess proprioception, depending on the body part being assessed. The include:
* [[Romberg Test|Romberg test]];
* '''Heel-shin.''' The patient is asked to touch the heel of one foot to the opposite knee and then to drag their heel in a straight line all the way down the front of their shin and back up again. In order to eliminate the effect of gravity in moving the heel down the shin, this test should always be done in the supine position.
* '''Ataxia'''. Best revealed if the examiner's finger is held at the extreme of the patient's reach, and if the examiner's finger is occasionally moved suddenly to a different location.
*'''Finger—nose—finger test.''' The patient is asked to alternately touch their nose and the examiner's finger as quickly as possible
*'''Distal proprioception test.''' The tester will move the joints of the hip, knee ankle and big toe up and down while you watch. You then ask the client  to repeat the same movement with your eyes closed.
*'''A contralateral joint matching task.''' Asking the patient to match a demonstrated joint angle, and measuring the difference between the actual joint angle, and the reproduced joint angle (the difference representing the proprioception error).
=== Learning New Skills ===
An intact sense of proprioception is crucial to learning a new skill. During the learning of any new skill, (sport performance or an artistic activity, for example) it is usually necessary to become familiar with some proprioceptive tasks specific to that activity. Without the appropriate integration of proprioceptive input, an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas; it would be impossible to drive an automobile because a motorist would not be able to steer or use the foot pedals while looking at the road ahead. A person could not touch-type (typing without looking at the keys) or perform a ballet dance. The bottom line remains that our sense of proprioception is important to train and develop, as it allows us to interact with our environments without the dependence on visual feedback (for example, reaching for a cup on the top shelve, without looking at the cup).


== Physiotherapy - Training Proprioception  ==
== Physiotherapy - Training Proprioception  ==
No matter the underlying cause physiotherapists  can train clients with activities to improve motor skills, strength, and balance.  
No matter the underlying cause of a proprioceptive deficit, clinicians can rehabilitate patients with tasks and activities to improve motor skills, strength, balance and coordination. They can also help patients learn how to manage daily tasks (ADLs) while living with a proprioception dysfunction.  


Also they can help clients to learn how to manage daily tasks while living with proprioception dysfunction
There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function.<ref>Aman JE, Elangovan N, Yeh I, Konczak J. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309156/ The effectiveness of proprioceptive training for improving motor function: a systematic review]. Frontiers in human neuroscience. 2015 Jan 28;8:1075. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309156/ (last accessed 31.10.2019)</ref> Retraining of a somatosensory function includes any interventions that addresses the remediation of the somatosensory modalities. Intervention methods include: 
* '''Education;''' 
* '''Repetitive practice and feedback in detecting, localising, discriminating, or recognising different sensory stimuli, pressure, or objects; PRACTICE, PRACTICE, PRACTICE!'''
* '''Proprioceptive training;'''
* '''Balance training (unstable surfaces, unpredictable situations with an external stimuli);'''
* '''Dual task training (in the absence of visual feedback for example)'''
* '''Somatosensory stimulation,<ref name=":0">Chia FS, Kuys S, [https://journals.sagepub.com/doi/full/10.1177/0269215519836461 Low Choy N. Sensory retraining of the leg after stroke: systematic review and meta-analysis.] Clinical rehabilitation. 2019 Jun;33(6):964-79. Available from: https://journals.sagepub.com/doi/full/10.1177/0269215519836461 (last accessed 31.10,2019)</ref>''' 


Techniques could include
A 2019 review on sensory retraining of the leg following a stroke, concluded that interventions used for retraining leg somatosensory impairment significantly improved somatosensory function and balance, but not gait suggesting a specificity of training effect.<ref name=":0" />
* somatosensory stimulation training, such as vibration therapy
 
* exercises, such as balance exercises. Standing on a Balance board is often used to retrain or increase proprioception abilities, particularly as physical therapy for ankle or knee injuries.[[Image:Ankle proprioception.jpg|center]]
A 2005 systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligaments, reported that proprioceptive and balance exercise improves outcomes in individuals with ACL-deficient knees.<ref>Cooper RL, Taylor NF, Feller JA. [https://www.tandfonline.com/doi/full/10.1080/15438620590956197 A systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligament.] Research in sports medicine. 2005 Apr 1;13(2):163-78. Available from: https://www.tandfonline.com/doi/full/10.1080/15438620590956197 (last accessed 31.10.2019)</ref> Similarly a 2015 review on ankle sprains amongst a sporting population, concluded that proprioceptive training programmes are effective at reducing the rate of re-injury, particularly amongst those with a history of ankle sprain.<ref>Schiftan GS, Ross LA, Hahne AJ. [https://www.jsams.org/article/S1440-2440(14)00074-7/fulltext The effectiveness of proprioceptive training in preventing ankle sprains in sporting populations: a systematic review and meta-analysis]. Journal of Science and Medicine in Sport. 2015 May 1;18(3):238-44. Available from: https://www.jsams.org/article/S1440-2440(14)00074-7/fulltext (last accessed 31.10.2019)</ref>
* [[Tai Chi and the Older Person|Tai Chi]], which improves lower limb proprioception and Yoga, which improves balance and muscle strength. The slow, focused movements of Tai Chi practice provide an environment whereby the proprioceptive information being fed back to the brain stimulates an intense, dynamic "listening environment" to further enhance mind / body integration. Several studies have shown that the efficacy of these types of training is challenged by closing the eyes, because the eyes give invaluable feedback to establishing the moment-to-moment information of [[balance]].
 
* The Alexander Technique uses the study of movement to enhance kinesthetic judgment of effort and location. Juggling trains reaction time, spatial location, and efficient movement.  
The effectiveness of physiotherapy treatment on balance dysfunction and postural instability in persons with Parkinson’s disease: a systematic review and meta-analysis in 2016 reported that physiotherapy interventions like balance training combined with muscle strengthening, range of movement and walking training exercise is effective in improving balance in patients with Parkinson’s disease. As proprioception can also be improved with balance training, this could possibly advocate for proprioceptive retraining as well, amongst this population.<ref>Yitayeh A, Teshome A. [https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-016-0042-0 The effectiveness of physiotherapy treatment on balance dysfunction and postural instability in persons with Parkinson’s disease: a systematic review and meta-analysis]. BMC sports science, medicine and rehabilitation. 2016 Dec;8(1):17. Available from: https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-016-0042-0 (last accessed 31.10.2019)</ref>
See these great pages too
 
==== Proprioception rehabilitation often include: ====
*[[File:SLS balance on bosu.jpg|right|frameless|300x300px]]'''1. Balance exercises.''' Standing on a Balance board is often used to retrain or increase proprioception abilities, particularly as physical therapy for ankle or knee injuries. You can also perform weight bearing exercises on an unstable surface (such as a Bosu Ball or stability disc) for the upper extremities (such as push ups, or simply weight bearing on elbows or an outstretched arm position). [[File:Taoist Tai Chi class.jpg|right|frameless|214x214px]]'''2. [[Tai Chi and the Older Person|Tai Chi]],''' which improves lower limb proprioception and Yoga, which improves balance and muscle strength. The slow, focused movements of Tai Chi practice provide an environment whereby the proprioceptive information being fed back to the brain stimulates an intense, dynamic "listening environment" to further enhance mind / body integration.
'''3. somatosensory stimulation training''', such as vibration therapy, different textures (cotton ball vs. velcro);
 
'''4. Joint repositioning training''' (joint matching tasks).
 
For complimentary topics, please read the following pages


[[Neuromuscular Exercise Program]]  
[[Neuromuscular Exercise Program]]  
Line 87: Line 115:
[[Developmental Coordination Disorder and Physical Activity]]  
[[Developmental Coordination Disorder and Physical Activity]]  


[[Sensorimotor Impairment in Neck Pain]]  
[[Sensorimotor Impairment in Neck Pain]]
 
 
== References ==
== References ==
<references />  
<references />
 
*[http://en.wikipedia.org/w/index.php?title=Proprioception&oldid=243814756 Proprioception]. (2008, October 8). In Wikipedia, The Free Encyclopedia. Retrieved 10:04, October 20, 2008.
*[http://www.jumpusa.com/proprioEM.html The Proprioceptor System]
*Ehrsson, H., Kito, T., Sadato, N., Passingham, R., &amp; Naito, E. (2005). Neural substrate of body size: illusory feeling of shrinking of the waist.
 
[[Category:Open_Physio]]  
[[Category:Open_Physio]]  
[[Category:Falls]]  
[[Category:Falls]]  

Latest revision as of 14:00, 18 August 2023

Introduction[edit | edit source]

Proprioception (sense of body positioning in space) is an important bodily neuromuscular sense. It falls under our "sixth sense", more commonly known as somatosensation. The term somatosensation (or somatosensory senses) is an all encompassing term which includes the sub-categories of mechanoreception (vibration, pressure, discriminatory touch), thermoreception (temperature), nociception (pain), equilibrioception (balance) and proprioception (sense of positioning and movement).[1] The feedback from all these different sensory components arise from our peripheral nervous system (PNS), and feed information to our central nervous system (CNS), both at the level of the spinal cord (reflexive) and sent to the cerebral cortex for higher processing.[2]

Proprioception itself can be understood as including various sub-modalities:

Joint Position Sense: Proprioception is our sense of joint / limb positioning. It is often measured through joint position sense - active joint position sense (AJPS) and passive joint position sense (PJPS). Joint position sense determines the ability of a person to perceive a presented joint angle and then, after the limb has been moved, to actively or passively reproduces the same joint angle[3] (Clinically measured as a joint matching task).

Kinaesthesia: Kinaesthesia (kinaesthesis) is the awareness of motion of the human body (motion sense).[4] Sense of movement refers to the ability to appreciate joint movement, including the duration, direction, amplitude, speed, acceleration and timing of movements.[3]

Sense of Force: Sense of Force (SoF) is also known as sense of effort / heaviness / tension or the force matching sense. It is the ability to reproduce (or match) a desired level of force one or more times. Sense of force is thought to stem from the afferent feedback of the Golgi Tendon Organs (GTOs) embedded within our tendons, the muscle spindles within our muscles and proprioceptions within our skin.[5]

Sense of Change in Velocity (SoV): SoV is our ability to detect vibration, derived from oscillating objects placed against the skin.[6] It is believed to travel through the same type of large afferent nerve fibers (Aαβ) as proprioception.[7]

Somatosensation. Retrieved from: Ager, A.L., Borms, D., Deschepper, L., Dhooghe, R., Dijkhuis, J., Roy, J.S., &  Cools, A.Proprioception and shoulder pain: A Systematic Review. J Hand Ther. 2019 Aug 31. pii: S0894-1130(19)30094-8. doi: 10.1016/j.jht.2019.06.002. 

Globally, all sub-modalities of proprioception arise from the sum of neural inputs from the joint capsules, ligaments, muscles, tendons, and skin, in a multifaceted system, which influences behavior regulation and motor control of the body.[8]

Proprioception is critical for meaningful interactions with our surrounding environment. Proprioception helps with the planing of movements, sport performance, playing a musical instrument and ultimately helping us avoid an injury.

The neurological basis of proprioception comes primarily from sensory receptors (mechanoreceptors and proprioceptors) located in your skin, joints, and muscles (muscle spindles with a smaller component from tendon organ afferents, cutaneous receptors and minimal input from joint receptors). These muscle afferents receptors allow for the identification of limb position and movement via neural signalling of a change in muscle, skin or joint stretch[9]. Hence, proprioception is basically a continuous loop of feedforward and feedback inputs between sensory receptors throughout your body and your nervous system.

A mechanoreceptor is a sensory receptor in your body that responds to mechanical changes of tissues. Different types of mechanoreceptors include

  • Pacinian Corpuscles
  • Meissner's Corpuscles
  • Merkel's Discs
  • Ruffini Corpuscles
  • Golgi Tendon Organs (GTO)
  • Free nerve endings

There are also mechanoreceptors within the hair and skin.

There are four types of mechanoreceptors found within ligamentous tissues. As all the types of mechanoreceptors are myelinated and rapidly transmit sensory information to the CNS.[10]

  • Type I: (small) Low threshold, slow adapting in both static and dynamic settings;
  • Type II: (medium) Low threshold, rapidly adapting in dynamic settings;
  • Type III: (large) High threshold, slowly adapting in dynamic settings;
  • Type IV: (very small) High threshold pain receptors that communicate injury.

Type II and Type III mechanoreceptors in particular are believed to be linked to one's sense of proprioception.[10]

The short video below gives a good insight into the complexities of proprioception.

[11]

Causes of Proprioception Impairment[edit | edit source]

Poor proprioception at a joint may result in the increased likelihood of an injury.[12] The reason for proprioception impairments are not clear at this time. A decreased sense of proprioception can be caused by localized tissue damage, the presence of edema (swelling) or competitive nociceptive inputs (presence off pain).  

Proprioception can be affected by the following factors:

  • Temporary impairment from a compromised state (for example the consumption of alcohol).
  • Age-related changes also affect proprioception. The risk of proprioception loss increases as we age due to a combination of natural age-related changes to the nerves, joints, and muscles.
  • Injuries or medical conditions that affect the neuromuscular system (muscles, nerves, and the cerebellum, CNS) which can cause long-term or permanent proprioception impairment.

Proprioception impairments have been noted among the following neurological conditions:

Assessing Proprioception[edit | edit source]

The measurement of proprioception is presently not well developed. Proprioception can only be confidently measured in a laboratory setting, using complex computer-interfaced equipment. There is presently a lack of valid, reliable and responsive tools and outcome measures to quantify proprioception deficits, in a clinical setting.[13]

If you suspect a proprioception deficit, focus on the following clinical aspects.

Subjective assessment should include questions regarding the following:

  • Balance issues, such as having trouble standing on one foot or frequent falls while walking or sitting;
  • Uncoordinated movement (ataxia), such as not being able to walk in a straight line, or difficulty reaching for an object;
  • The avoidance of certain activities, such as climbing stairs or walking on uneven surfaces because of a fear of falling.

Objective assessment should include observation of the above and the points below:

  • Overal coordination (Reaching tests, Star Excurtion Balance Test, Upper extremity coordination tests);
  • Clumsiness, such as dropping or bumping into things;
  • Poor postural control, such as slouching or having to place extra weight on a table for balance while sitting;
  • Trouble recognizing the appropriate level of muscular strength for a task (for example: pressing on a pen too hard when writing or not being able to gauge the force needed to pick up an object).

There are a few clinical tests Physiotherapists can use to assess proprioception, depending on the body part being assessed. The include:

  • Romberg test;
  • Heel-shin. The patient is asked to touch the heel of one foot to the opposite knee and then to drag their heel in a straight line all the way down the front of their shin and back up again. In order to eliminate the effect of gravity in moving the heel down the shin, this test should always be done in the supine position.
  • Ataxia. Best revealed if the examiner's finger is held at the extreme of the patient's reach, and if the examiner's finger is occasionally moved suddenly to a different location.
  • Finger—nose—finger test. The patient is asked to alternately touch their nose and the examiner's finger as quickly as possible
  • Distal proprioception test. The tester will move the joints of the hip, knee ankle and big toe up and down while you watch. You then ask the client to repeat the same movement with your eyes closed.
  • A contralateral joint matching task. Asking the patient to match a demonstrated joint angle, and measuring the difference between the actual joint angle, and the reproduced joint angle (the difference representing the proprioception error).

Learning New Skills[edit | edit source]

An intact sense of proprioception is crucial to learning a new skill. During the learning of any new skill, (sport performance or an artistic activity, for example) it is usually necessary to become familiar with some proprioceptive tasks specific to that activity. Without the appropriate integration of proprioceptive input, an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas; it would be impossible to drive an automobile because a motorist would not be able to steer or use the foot pedals while looking at the road ahead. A person could not touch-type (typing without looking at the keys) or perform a ballet dance. The bottom line remains that our sense of proprioception is important to train and develop, as it allows us to interact with our environments without the dependence on visual feedback (for example, reaching for a cup on the top shelve, without looking at the cup).

Physiotherapy - Training Proprioception[edit | edit source]

No matter the underlying cause of a proprioceptive deficit, clinicians can rehabilitate patients with tasks and activities to improve motor skills, strength, balance and coordination. They can also help patients learn how to manage daily tasks (ADLs) while living with a proprioception dysfunction.

There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function.[14] Retraining of a somatosensory function includes any interventions that addresses the remediation of the somatosensory modalities. Intervention methods include:

  • Education;
  • Repetitive practice and feedback in detecting, localising, discriminating, or recognising different sensory stimuli, pressure, or objects; PRACTICE, PRACTICE, PRACTICE!
  • Proprioceptive training;
  • Balance training (unstable surfaces, unpredictable situations with an external stimuli);
  • Dual task training (in the absence of visual feedback for example)
  • Somatosensory stimulation,[15]

A 2019 review on sensory retraining of the leg following a stroke, concluded that interventions used for retraining leg somatosensory impairment significantly improved somatosensory function and balance, but not gait suggesting a specificity of training effect.[15]

A 2005 systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligaments, reported that proprioceptive and balance exercise improves outcomes in individuals with ACL-deficient knees.[16] Similarly a 2015 review on ankle sprains amongst a sporting population, concluded that proprioceptive training programmes are effective at reducing the rate of re-injury, particularly amongst those with a history of ankle sprain.[17]

The effectiveness of physiotherapy treatment on balance dysfunction and postural instability in persons with Parkinson’s disease: a systematic review and meta-analysis in 2016 reported that physiotherapy interventions like balance training combined with muscle strengthening, range of movement and walking training exercise is effective in improving balance in patients with Parkinson’s disease. As proprioception can also be improved with balance training, this could possibly advocate for proprioceptive retraining as well, amongst this population.[18]

Proprioception rehabilitation often include:[edit | edit source]

  • SLS balance on bosu.jpg
    1. Balance exercises. Standing on a Balance board is often used to retrain or increase proprioception abilities, particularly as physical therapy for ankle or knee injuries. You can also perform weight bearing exercises on an unstable surface (such as a Bosu Ball or stability disc) for the upper extremities (such as push ups, or simply weight bearing on elbows or an outstretched arm position).
    Taoist Tai Chi class.jpg
    2. Tai Chi, which improves lower limb proprioception and Yoga, which improves balance and muscle strength. The slow, focused movements of Tai Chi practice provide an environment whereby the proprioceptive information being fed back to the brain stimulates an intense, dynamic "listening environment" to further enhance mind / body integration.

3. somatosensory stimulation training, such as vibration therapy, different textures (cotton ball vs. velcro);

4. Joint repositioning training (joint matching tasks).

For complimentary topics, please read the following pages:

Neuromuscular Exercise Program

Coordination Exercises

Developmental Coordination Disorder and Physical Activity

Sensorimotor Impairment in Neck Pain

References[edit | edit source]

  1. Ager, A.L.,  Borms, D., Deschepper, L., Dhooghe, R., Dijkhuis, J., Roy, J.S., &  Cools, A.Proprioception and shoulder pain: A Systematic Review. J Hand Ther. 2019 Aug 31. pii: S0894-1130(19)30094-8. doi: 10.1016/j.jht.2019.06.002. 
  2. Guyton AC. Textbook of Medical Physiology. 8th ed. Philadelphia, PA  WB Saunders; 1992.
  3. 3.0 3.1 Riemann, B. L., & Lephart, S.M. (2002). The sensorimotor system, part 1: the physiological basis of functional joint stability. Journal of Athletic Training, 37(1),71-79.
  4. Sherrington CS. On the proprio-ceptive system, especially in its reflex aspect. Brain. 1907;29:467–482.
  5. Hung, Y. J. (2015). Neuromuscular control and rehabilitation of the unstable ankle. World Journal of Orthopedics6(5), page 434.
  6. Gilman, S., Joint position sense and vibration sense: anatomical organisation and assessment.Journal of neurology, neurosurgery, and psychiatry, 2002. 73(5): p. 473-7.
  7. Shakoor, N., A. Agrawal, and J.A. Block, Reduced lower extremity vibratory perception in osteoarthritis of the knee.Arthritis and rheumatism, 2008. 59(1): p. 117-21.
  8. Blanche, E.I., Bodison, S., Chang, M.C., & Reinoso, G. (2012). Development of the Comprehensive Observations of Proprioception (COP): Validity, Reliability, and Factor Analysis. Am J Occup Ther. 66(6): 691–698. doi:10.5014/ajot.2012.003608.
  9. Suetterlin KJ, Sayer AA. Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions. Age and ageing. 2013 Nov 14;43(3):313-8. Available from: https://academic.oup.com/ageing/article/43/3/313/16765 (last accessed 31.10.19)
  10. 10.0 10.1 Michelson JD, Hutchins C. (1995). Mechanoreceptors in human ankle ligaments. The Journal of Bone and Joint Surgery. British Volume77 (2): 219–24. PMID 7706334.
  11. W Deloriea Proprioceptors Available from: https://www.youtube.com/watch?v=Dzlkz8j-8rg ( last accessed 30.10.2019)
  12. Anderson, V. B., & Wee, E. (2011). Impaired joint proprioception at higher shoulder elevations in chronic rotator cuff pathology. Arch Phys Med Rehabil, 92(7), 1146-1151. doi:10.1016/j.apmr.2011.02.004
  13. Ager, A.L.,Roy, J.S., Roos, M., Belley, A.F., Cools, A., & Hebert, L.J. (2017). Shoulder proprioception: How is it measured and is it reliable? A systematic review. J Hand Ther.,30(2), 221-231. doi: 10.1016/j.jht.2017.05.003.
  14. Aman JE, Elangovan N, Yeh I, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Frontiers in human neuroscience. 2015 Jan 28;8:1075. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309156/ (last accessed 31.10.2019)
  15. 15.0 15.1 Chia FS, Kuys S, Low Choy N. Sensory retraining of the leg after stroke: systematic review and meta-analysis. Clinical rehabilitation. 2019 Jun;33(6):964-79. Available from: https://journals.sagepub.com/doi/full/10.1177/0269215519836461 (last accessed 31.10,2019)
  16. Cooper RL, Taylor NF, Feller JA. A systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligament. Research in sports medicine. 2005 Apr 1;13(2):163-78. Available from: https://www.tandfonline.com/doi/full/10.1080/15438620590956197 (last accessed 31.10.2019)
  17. Schiftan GS, Ross LA, Hahne AJ. The effectiveness of proprioceptive training in preventing ankle sprains in sporting populations: a systematic review and meta-analysis. Journal of Science and Medicine in Sport. 2015 May 1;18(3):238-44. Available from: https://www.jsams.org/article/S1440-2440(14)00074-7/fulltext (last accessed 31.10.2019)
  18. Yitayeh A, Teshome A. The effectiveness of physiotherapy treatment on balance dysfunction and postural instability in persons with Parkinson’s disease: a systematic review and meta-analysis. BMC sports science, medicine and rehabilitation. 2016 Dec;8(1):17. Available from: https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-016-0042-0 (last accessed 31.10.2019)