Skeletal Muscle: Difference between revisions

No edit summary
No edit summary
Line 7: Line 7:
Skeletal muscle attaches to the bone by tendons, and together they produce all body movements. However it has important roles in health beyond voluntary movement.
Skeletal muscle attaches to the bone by tendons, and together they produce all body movements. However it has important roles in health beyond voluntary movement.


Human skeletal muscle is an extremely dynamic and responsive tissue. Humans skeletal muscle constitutes roughly 40% of total body weight and a huge 50-75% of all the bodies proteins. Our muscle mass muscle mass depends on the dynamic process of  protein synthesis and loss, this activity being responsive to factors including nutritional status, hormonal balance, physical activity/exercise, and injury or disease. As such it has important roles in health beyond voluntary movement.<ref>Frontera WR, Ochala J. [https://pubmed.ncbi.nlm.nih.gov/25294644/ Skeletal muscle: a brief review of structure and function.] Calcified tissue international. 2015 Mar;96:183-95.Available:https://pubmed.ncbi.nlm.nih.gov/25294644/ (accessed 16.4.2023)</ref><ref>Graham ZA, Lavin KM, O’Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ Mechanisms of exercise as a preventative measure to muscle wasting.] American Journal of Physiology-Cell Physiology. 2021 Jul 1;321(7):C40-57.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ (accessed 16.4.2023)</ref>
Human skeletal muscle is an extremely dynamic and responsive tissue. Humans skeletal muscle constitutes roughly 40% of total body weight and a huge 50-75% of all the bodies proteins. Our muscle mass muscle mass depends on the dynamic process of  protein synthesis and loss, this activity being responsive to factors including nutritional status, hormonal balance, physical activity/exercise, and injury or disease. As such it has important roles in health beyond voluntary movement.<ref name=":0">Frontera WR, Ochala J. [https://pubmed.ncbi.nlm.nih.gov/25294644/ Skeletal muscle: a brief review of structure and function.] Calcified tissue international. 2015 Mar;96:183-95.Available:https://pubmed.ncbi.nlm.nih.gov/25294644/ (accessed 16.4.2023)</ref><ref>Graham ZA, Lavin KM, O’Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ Mechanisms of exercise as a preventative measure to muscle wasting.] American Journal of Physiology-Cell Physiology. 2021 Jul 1;321(7):C40-57.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ (accessed 16.4.2023)</ref>


Skeletal muscle fibers are crossed with a orderly pattern of fine red and white lines, hence its name striated muscle. For more on this see [[Muscle Cells (Myocyte)]]
Skeletal muscle fibers are crossed with a orderly pattern of fine red and white lines, hence its name striated muscle. For more on this see [[Muscle Cells (Myocyte)]]
Line 15: Line 15:


== Sub Heading 3 ==
== Sub Heading 3 ==
Many medical conditions occur due to abnormalities in skeletal muscles' function.
* These include myopathy, paralysis, myasthenia gravis, urinary and/or bowel incontinence, ataxia, weakness, tremors, and others.
* Neuronal disorders can cause neuropathy and cause alterations in skeletal muscles funtion.
* Skeletal muscle/tendon ruptures also occur acutely and cause serious disability in patients regardless of how active they are.<ref name=":0" />


== Resources  ==
== Resources  ==

Revision as of 07:05, 16 April 2023

Original Editor - Lucinda hampton

Top Contributors - Lucinda hampton  

Introduction[edit | edit source]

Skeletal muscle attaches to the bone by tendons, and together they produce all body movements. However it has important roles in health beyond voluntary movement.

Human skeletal muscle is an extremely dynamic and responsive tissue. Humans skeletal muscle constitutes roughly 40% of total body weight and a huge 50-75% of all the bodies proteins. Our muscle mass muscle mass depends on the dynamic process of protein synthesis and loss, this activity being responsive to factors including nutritional status, hormonal balance, physical activity/exercise, and injury or disease. As such it has important roles in health beyond voluntary movement.[1][2]

Skeletal muscle fibers are crossed with a orderly pattern of fine red and white lines, hence its name striated muscle. For more on this see Muscle Cells (Myocyte)

Sub Heading 2[edit | edit source]

Muscle can be viewed as a biomechanical organ requiring the coordination between diverse factors both intrinsic (e.g., genetic) and extrinsic (e.g., environmental stressors, circulatory factors, etc.) to function normally, with each of these components cross talking. Abnormal molecular mechanisms can lead to disease and muscle research at many levels (genomic, molecular and mechanistic) is helping in the prevention and management of skeletal muscle health and disease.[3]

Sub Heading 3[edit | edit source]

Many medical conditions occur due to abnormalities in skeletal muscles' function.

  • These include myopathy, paralysis, myasthenia gravis, urinary and/or bowel incontinence, ataxia, weakness, tremors, and others.
  • Neuronal disorders can cause neuropathy and cause alterations in skeletal muscles funtion.
  • Skeletal muscle/tendon ruptures also occur acutely and cause serious disability in patients regardless of how active they are.[1]

Resources[edit | edit source]

  • bulleted list
  • x

or

  1. numbered list
  2. x

References[edit | edit source]

  1. 1.0 1.1 Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcified tissue international. 2015 Mar;96:183-95.Available:https://pubmed.ncbi.nlm.nih.gov/25294644/ (accessed 16.4.2023)
  2. Graham ZA, Lavin KM, O’Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. American Journal of Physiology-Cell Physiology. 2021 Jul 1;321(7):C40-57.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ (accessed 16.4.2023)
  3. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020 Jan;12(1):e1462.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916202/ (accessed 16.4.2023)