Orthotics in Cerebral Palsy: Difference between revisions

No edit summary
No edit summary
 
(15 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<div class="editorbox">Original Editor - [[User:Scott Buxton|Scott Buxton]] Top Contributors - {{Special:Contributors/{{FULLPAGENAME}}}}</div>
<div class="editorbox">
Original Editor - [[User:Scott Buxton|Scott Buxton]]  


Top Contributors - {{Special:Contributors/{{FULLPAGENAME}}}}</div>
== Introduction  ==
== Introduction  ==
[[File:AFO-Swedish-Leaf-Side-Shoe.jpg|right|frameless|204x204px]]
[[File:AFO-Swedish-Leaf-Side-Shoe.jpg|right|frameless|204x204px]]
An orthosis by definition, is "an externally applied device used to modify the structural and functional characteristics of the neuromuscular and skeletal system"<ref>Gale Encyclopedia of Medicine. Copyright 2008 The Gale Group, Inc.</ref>.  
An orthosis by definition, is "an externally applied device used to modify the structural and functional characteristics of the neuromuscular and skeletal system"<ref>Gale Encyclopedia of Medicine. Copyright 2008 The Gale Group, Inc.</ref>.  


Why are the interdisciplinary team members convinced to use the [[Orthotics|orthoses]] as part of the treatment plan? Because of the comprehensive understanding of the [[Cerebral Palsy Introduction|CP]] patients, concentrating on the function limitations has a great effect on the new range of improved designs of orthoses to improve the outcome for the benefit of the patient. <br>In 1994 during the consensus conference held in Duke University, ISPO (International Society for Prosthetics and Orthotics) identified the goals of the lower limb orthotic management of CP. The identified goals can also be applied in postural impairments of the trunk and upper limbs<ref>Report of a Consensus Conference on Lower Limb orthotic Management in Cerebral Palsy. International Society for Prosthetics and orthotics. 1994.  https://www.ispoint.org/resource/resmgr/4_EXCHANGE/Conference_on_the_Lower_Limb.pdf</ref>. The identified goals were:  
Why are the interdisciplinary team members convinced to use the [[Introduction to Orthotics|orthoses]] as part of the treatment plan?
 
Because of the comprehensive understanding of the [[Cerebral Palsy Introduction|Cerebral Palsy]](CP) patients, concentrating on the function limitations has a great effect on the new range of improved designs of orthoses to improve the outcome for the benefit of the patient. <br>In 1994 during the consensus conference held in Duke University, ISPO (International Society for Prosthetics and Orthotics) identified the goals of the lower limb orthotic management of CP. The identified goals can also be applied in postural impairments of the trunk and upper limbs<ref>Report of a Consensus Conference on Lower Limb orthotic Management in Cerebral Palsy. International Society for Prosthetics and orthotics. 1994.  https://www.ispoint.org/resource/resmgr/4_EXCHANGE/Conference_on_the_Lower_Limb.pdf</ref>. The identified goals were:  


*To correct and/or prevent deformity  
*To correct and/or prevent deformity  
Line 33: Line 38:
{{#ev:youtube|https://www.youtube.com/watch?v=VxRfpd9srRk&app=desktop|width}}<ref>Dr A. Elnahhas ORTHOTIC PRESCRIPTION FOR CEREBRAL PALSY Available from: https://www.youtube.com/watch?v=VxRfpd9srRk&app=desktop (last accessed 6.11.2019)</ref>  
{{#ev:youtube|https://www.youtube.com/watch?v=VxRfpd9srRk&app=desktop|width}}<ref>Dr A. Elnahhas ORTHOTIC PRESCRIPTION FOR CEREBRAL PALSY Available from: https://www.youtube.com/watch?v=VxRfpd9srRk&app=desktop (last accessed 6.11.2019)</ref>  
=== Lower Limb Orthotic Designs  ===
=== Lower Limb Orthotic Designs  ===
Lower limb orthotics are a vital component of orthotic rehabilitation for individuals with various conditions, including cerebral palsy. These orthotic devices are specifically designed to support, align, and improve the function of the lower extremities. They play a crucial role in addressing a wide range of issues, such as foot deformities, gait abnormalities, muscle weakness, and joint instability. By providing external support and optimising biomechanics, lower limb orthotics aim to enhance mobility, promote efficient movement patterns, and improve overall quality of life for individuals with cerebral palsy.


==== Foot Orthoses (FO)  ====
==== Foot Orthoses (FO)  ====


Foot orthotics do not prevent deformity. They provide a better contact of the sole of the foot with the ground.  
Foot orthotics do not prevent deformity. They provide a better contact of the sole of the foot with the ground. Foot orthoses are commonly prescribed to correct alignment issues and provide support for the foot.
 
Foot orthoses help improve foot stability, correct excessive pronation or supination, and promote optimal foot alignment. By providing support and redistributing pressures, foot orthoses enhance balance and reduce the risk of falls. They can also improve foot function during the stance phase of gait by optimising weight-bearing and promoting efficient movement patterns.


==== Supramalleolar Orthosis (SMO) ====
==== Supramalleolar Orthosis (SMO) ====


This orthosis extends to just above the malleoli and to the toes. Consider in mild dynamic equinus, varus and valgus instability.<br> <br>University of California Biomechanics Laboratory Orthosis (UCBL)<br>The medial side is higher than the lateral, holds the calcaneus more firmly, supports the longitudinal arch. Prescribed for hind and midfoot instability.<br>
This orthosis extends to just above the malleoli and to the toes. Consider in mild dynamic equinus, varus and valgus instability. Supramalleolar orthoses are typically prescribed to address ankle and foot instability while allowing freedom of movement.


==== Ankle Foot Orthoses (AFO)  ====
SMOs provide support to the ankle while allowing normal ankle motion. They enhance ankle stability and correct alignment issues, which can improve balance and prevent ankle sprains. SMOs primarily aid in the stance phase of gait by providing stability during weight-bearing activities.


The AFO is the basic orthosis in CP and is a crucial piece of equipment for many children with spastic diplegia. The main function of the AFO is to maintain the foot in a plantigrade position. This provides a stable base of support that facilitates the function and also reduces tone in the stance phase of the gait. The AFO supports the foot and prevents drop foot during swing phase. If worn at night, a rigid AFO may prevent contracture. AFOs provide a more energy efficient gait. The brace should be simple, light but strong. It should be easy to use. Most importantly it should provide and increase functional independence.<br>There are various types of the AFO.
University of California Biomechanics Laboratory Orthosis (UCBL): The medial side is higher than the lateral, holds the calcaneus more firmly, supports the longitudinal arch. Prescribed for hind and midfoot instability.<br>  


==== Dynamic AFO (DAFO)  ====
==== Ankle Foot Orthoses (AFO)  ====
 
The Dynamic Ankle Foot Orthosis generally refers to a custom made Supra Malleolar Orthosis fabricated from thin thermoplastic material (FIGURE 1). It fits the foot intimately and the use of the flexible and thin thermoplastic means that the DAFO can provide circumferential control of the rear and fore foot to maintain a neutral alignment. In the original designs of DAFOs, a ‘neurological’ foot plate was often incorporated that consisted of a pad at the peronal notch, a metatarsal dome and dorsiflexing the lateral four toes. It was theorised that applying these pressures to the foot would decrease the level of spasticity in the gastrocnemius and therefore reduce the level of equinus often observed in spastic CP gait. However current literature shows there is no reduction in EMG activity of gastrocnemius with these modifications and therefore no reduction in muscle tone and the associated equinus. To effectively control sagittal plane deformities such as a plantar flexed ankle, a long lever arm is required that involves extending the trim lines up to the proximal calf. Therefore, DAFOs should only be used where there is coronal or transverse plane deformities of the foot and ankle that can be passively corrected with minimal force.<br> 
 
==== Solid AFO&nbsp; ====


The solid or rigid AFO allows no ankle motion, it covers the back of the leg completely and extends from just below the fibular head to metatarsal heads. The solid AFO enables heel strike in the stance phase and toe clearance in the swing phase. It can improve knee stability in ambulatory children. It also provides control of varus/ valgus deformity. Solid AFOs provides ankle stability in the standing frame in non-ambulatory children.  
The AFO is the basic orthosis in CP and is a crucial piece of equipment for many children with spastic diplegia. The main function of the AFO is to maintain the foot in a plantigrade position. This provides a stable base of support that facilitates the function and also reduces tone in the stance phase of the [[Gait Analysis in Cerebral Palsy|gait]].


A solid ankle foot orthosis aims to prevent all movement of the foot and ankle at the talo-crural, subtalar and midfoot joints. It is prescribed to children with CP when there is:
AFOs improve ankle stability, correct foot alignment, and facilitate a more functional gait pattern. For individuals with foot drop, AFOs help prevent the foot from dragging during the swing phase of gait. They provide ankle support during the stance phase, improving balance and preventing ankle sprains. AFOs can also correct equinus deformity (toe walking) and promote a smoother, more energy-efficient gait.  There are various types of the AFO.  


*Moderate to high tone in the gastrocnemius muscle;
===== Dynamic AFO (DAFO) =====
Dynamic AFOs are commonly prescribed for individuals with weak or spastic muscles, who require assistance with foot clearance during the swing phase.


*Less than 10 degrees of ankle dorsiflexion with the knee in maximum extension,
Dynamic AFOs incorporate a hinge mechanism that allows controlled movement during specific phases of gait. They assist with foot clearance during swing phase by providing dorsiflexion assistance, helping individuals clear their toes and prevent tripping.


*Moderate to severe medio lateral instabilities at the ankle
===== Solid AFO&nbsp; =====
Solid AFOs are prescribed to provide maximum stability and control for individuals with significant muscle weakness or joint instability.


*A requirement to provide proximal control at the knee and hip joints.<br>
The solid or rigid AFO allows no [[Ankle Joint|ankle]] motion, it covers the back of the leg completely and extends from just below the fibular head to metatarsal heads. The solid AFO enables heel strike in the stance phase and toe clearance in the swing phase. It can improve knee stability in ambulatory children. It also provides control of varus/ valgus deformity.


It is crucial that a solid AFO is sufficiently stiff at the ankle and does not flex or ‘buckle’ during mid to late stance as the dorsiflexion moment is applied. Flexing at the ankle compromises the midfoot control a Solid AFO can provide and reduces the influence it can have at the proximal joints of the hip and knee. <br>
Benefits and Function: Solid AFOs offer rigid support to stabilise the ankle and foot. They correct alignment issues, improve balance, and provide substantial control during weight-bearing activities. Solid AFOs can improve stability during stance phase, preventing ankle collapse and offering a secure base of support for walking.


A Solid AFO may be prescribed to help reduce the effects of ‘crouch’ gait, where the hips and knees are in a flexed position during mid stance. If the solid AFO does not resist the dorsiflexion moment during mid to late stance, the tibial Shank to Vertical Angle (SVA) is inclined and the Ground Reaction Force is shifted posterior at the knee and anterior to the hip, thereby permitting crouch gait to occur. <br> <br>The ankle section of solid AFO may be stiffened by:
Solid AFOs provides ankle stability in the standing frame in non-ambulatory children.  
*Selecting a material that is sufficiently stiff with an appropriate thickness to manufacture the AFO;
*Ensuring the trimlines/edges at the ankle section are anterior to the malleoli;
*Adding reinforcement material by ‘double moulding’ thermoplastic, including ribbing at the ankle or using carbon fibre reinforcements.


==== Posterior Leaf Spring AFO (PLSO)  ====
==== Posterior Leaf Spring AFO (PLSO)  ====


A Posterior Leaf Spring AFO is a rigid AFO trimmed behind the malleoli’s to provide flexibility at the ankle and allows passive ankle dorsiflexion during the stance phase. A PLSO provides smoother knee-ankle motion during walking while preventing excessive ankle dorsiflexion Varus-valgus control is also poor because it is repeatedly deformed during weight bearing. A PLSO is an ideal choice in mild spastic equinus. Do not use it with patients who have crouch gait and pes valgus.<br>
A Posterior Leaf Spring AFO is a rigid AFO trimmed behind the malleoli’s to provide flexibility at the ankle and allows passive ankle dorsiflexion during the stance phase. A PLSO provides smoother knee-ankle motion during walking while preventing excessive ankle dorsiflexion Varus-valgus control is also poor because it is repeatedly deformed during weight bearing. A PLSO is an ideal choice in mild spastic equinus. Do not use it with patients who have crouch gait and pes valgus.  


The Posterior Leaf Spring (PLS) AFO is deemed a swing phase orthosis in that it is effective during swing phase only. It is only suitable for children who present with isolated dorsiflexor weakness or paralysis. It may be manufactured from many different types of materials including Ortholen, Co-polymer polypropylene and carbon composites. The flexible nature of the PLS AFO and the elastic properties of the materials used to fabricate it produces a dynamic orthosis. It permits controlled plantarflexion in early stance phase during loading of the limb and then maintains the foot at plantargrade during swing phase to ensure the foot clears the ground. It is not able to provide adequate control of the foot and ankle in the presence of moderate to high spasticity, mediolateral instabilities at the foot or ankle or where stance phase control of the knee or hip is required. The orthotic treatment goal of the PLS AFO is to maintain the foot and ankle in a plantargrade position during swing to permit foot clearance, but permit ankle plantarflexion and dorsiflexion during stance phase. <br>  
Posterior leaf spring AFOs help facilitate toe clearance during the swing phase by providing a gentle plantarflexion moment at the ankle. They assist with foot clearance, allowing for a smoother, more natural gait pattern. By addressing foot drop, these AFOs contribute to improved balance and reduced tripping risk.<br>  


==== Ground Reaction AFO (GRAFO)  ====
==== Ground Reaction AFO (GRAFO)  ====


This AFO is made with a solid ankle, the upper portion wraps around the anterior part of the tibia proximally with a solid front over the tibia. The rigid front provide strong ground reaction support for patients with weak triceps surae. The foot plate extends to the toes. The ankle may be set in slight plantar flexion of (2-3 degrees) if more corrective force at the knee is necessary. Use the GRAFO in patients with quadriceps weakness or crouch gait. It is an excellent brace for patients with weak triceps surae following hamstring lengthening. Children with static or dynamic knee flexion contractures (more than 15 degrees) do not get benefit out of it and do not tolerate the GRAFO.<br>
This AFO is made with a solid ankle, the upper portion wraps around the anterior part of the tibia proximally with a solid front over the tibia. The rigid front provide strong ground reaction support for patients with weak [[Triceps Surae|triceps surae]]. The foot plate extends to the toes. The ankle may be set in slight plantar flexion of (2-3 degrees) if more corrective force at the knee is necessary. Use the GRAFO in patients with [[Quadriceps Muscle|quadriceps]] weakness or crouch gait. It is an excellent brace for patients with weak triceps surae following [[Hamstrings|hamstring]] lengthening. Children with static or dynamic knee flexion contractures (more than 15 degrees) do not get benefit out of it and do not tolerate the GRAFO.
 
Ground reaction AFOs are prescribed for individuals with weak lower leg muscles, instability, or excessive knee flexion during stance.  Ground reaction AFOs use a design that applies forces to the lower limb during walking, specifically at the ankle and knee joints. They provide stability, enhance knee extension during stance, and prevent excessive knee flexion or collapse. These AFOs improve overall balance, enhance stability during weight-bearing, and promote a more efficient gait pattern.


The Ground Reaction Ankle Foot Orthosis (GRAFO is a type of solid AFO with the primary aim of increasing knee control during stance phase. The GRAFO generally has an anterior pre-tibial shell to increase the proximal lever arm and help control tibial progression through stance phase. As with the solid AFO it is imperative the GRAFO is sufficiently stiff to resist the dorsiflexion moment during mid-late stance phase to ensure it can help influence the position of the Ground Reaction Force in relation to the knee and hip joints. A full length footplate should be used in the GRAFO design to provide the maximum foot lever length thus shifting the GRF as far anterior to the knee as possible during stance phase. It is also important to ensure this footplate is sufficiently stiff to resist dorsiflexion during late stance. This can be achieved by ensuring the footplate material is sufficiently stiff and thick, but also by extending the medial and lateral trim lines distally to cover the metatarsal phalangeal joints. Either dynamic (tone) or fixed (contracture) hip or knee flexion contractures of &gt;10 degrees or transverse plane deformities such as excessive femoral and tibial torsion will reduce the effectiveness of the GRAFO at the knee and hip joints due to reduced foot lever length. To ensure optimal function, it is imperative that the GRAFO is aligned or ‘tuned’ to ensure the GRF is anterior to the knee at mid-late stance to help generate a knee extension moment. <br> <br>Anti-Recurvatum AFO
====  Anti-Recurvatum AFO ====
This special AFO is molded in slight dorsiflexion or has the heel built up slightly to push the tibia forward to prevent hyperextension during stance phase. Anti recurvatum AFOs are prescribed for individuals with hyperextension of the knee during stance phase.


This special AFO is molded in slight dorsiflexion or has the heel built up slightly to push the tibia forward to prevent hyperextension during stance phase. Consider prescribing this AFO for the treatment of genu recurvatum in hemiplegic or diplegic children. Anti-recurvatum AFOs may be solid or hinged depending on the child’s tolerance.<br>
Anti recurvatum AFOs limit knee hyperextension by providing a posterior stop. They improve knee stability, prevent excessive backward bending of the knee, and enhance weight-bearing distribution. These AFOs promote a more controlled and balanced gait by limiting knee hyperextension during the stance phase.


==== Hinged AFO  ====
==== Hinged AFO  ====


Hinged AFOs have a mechanical ankle joint usually preventing plantar flexion, but allowing relatively full dorsiflexion during the stance phase of gait. They provide a more normal gait because they permit dorsiflexion in stance phase of the gait, thus making it easier to walk on uneven surfaces and stairs. This is the best AFO for most ambulatory patients. Adjust the plantar flexion stop in (3- 7 degrees) dorsiflexion to control knee hyperextension in stance in children with genu recurvatum. The hinged AFO is contraindicated in children who do not have passive dorsiflexion of the ankle because it may force the midfoot joints into dorsiflexion and cause midfoot break deformity. Knee flexion contractures and triceps weakness are other contraindications where a hinged AFO may increase crouch gait.&nbsp;The AFO may be fitted with a hinge that allows 10 degrees passive dorsiflexion while preventing plantar flexion. This creates a more&nbsp;natural gait.  
Hinged AFOs are prescribed for individuals with complex foot and ankle problems, such as severe ankle instability or significant muscle weakness..  They have a mechanical ankle joint usually preventing plantar flexion, but allowing relatively full dorsiflexion during the stance phase of gait. They provide a more normal gait because they permit dorsiflexion in stance phase of the gait, thus making it easier to walk on uneven surfaces and stairs. This is the best AFO for most ambulatory patients. Adjust the plantar flexion stop in (3- 7 degrees) dorsiflexion to control knee hyperextension in stance in children with genu recurvatum. The hinged AFO is contraindicated in children who do not have passive dorsiflexion of the ankle because it may force the midfoot joints into dorsiflexion and cause midfoot break deformity. Knee flexion contractures and triceps weakness are other contraindications where a hinged AFO may increase crouch gait.&nbsp;The AFO may be fitted with a hinge that allows 10 degrees passive dorsiflexion while preventing plantar flexion. This creates a more&nbsp;natural gait.
 
Hinged AFOs offer adjustability and customizability to address specific foot and ankle issues. They provide stability, correct alignment, and enhance foot and ankle control. Hinged AFOs improve balance, reduce the risk of falls, and facilitate a more functional gait pattern by supporting and aligning the lower limb throughout the gait cycle.  


Hinged AFOs incorporate a mechanical joint that either allows or assists motion in one or more directions. Typically, in children with CP, hinged AFOs prevent plantarflexion at plantargrade (90degrees) and then permit free dorsiflexion. This design of AFO should only be considered if there is sufficient gastrocnemius length that permits 10degrees of dorsiflexion with the knee in full extension and where there is no spastic catch or resistance in range of the gastrocnemius due to increased muscle tone. Any AFO that permits the ankle to be in more dorsiflexion than can be achieved with the knee in maximum extension, will actually limit knee extension in stance and adversely affect knee and hip kinetics .The hinged AFO should also be only used where there is sufficient control of knee joint flexion and no requirement to prevent knee flexion in stance phase. Permitting ankle dorsiflexion in this case, shifts the GRF posterior to the knee and causes a knee flexion moment.  Even if there is sufficient gastrocnemius ROM and knee control, hinged AFOs may be unsuitable in the presence of moderate to severe medio-lateral instabilities of the foot and ankle. <br> <br>Knee Orthoses
====  Knee Orthoses ====


Knee orthoses are used as resting splints in the early postoperative period and during therapeutic ambulation. There are two types of knee orthoses, the knee immobilizer and the plastic knee-ankle foot orthosis (KAFO). The use of such splints protects the knee joint, prevents deformity recurrence after multilevel lengthening and enables a safer start to weight bearing and ambulation after surgery.<br>  
Knee orthoses are used as resting splints in the early postoperative period and during therapeutic ambulation. There are two types of knee orthoses, the knee immobilizer and the plastic knee-ankle foot orthosis (KAFO). The use of such splints protects the knee joint, prevents deformity recurrence after multilevel lengthening and enables a safer start to weight bearing and ambulation after surgery.<br>  


==== Knee Immobilizers   ====
==== Knee Immobilisers   ====


Knee immobilizers are made of soft elastic material and hold only the knee joint in extension, leaving the ankle joint free. Consider using them in the early postoperative period after hamstring surgery and rectus tendon transfers.<br> Consider the knee immobilizer after hamstring surgery.  
Knee immobilisers are made of soft elastic material and hold only the knee joint in extension, leaving the ankle joint free. Consider using them in the early postoperative period after hamstring surgery and rectus tendon transfers.  


==== Plastic KAFOs  ====
==== Plastic KAFOs  ====


Plastic resting KAFOs extend from below the hips to the toes and stabilize the ankle joint as well as the knee. They are more rigid and provide better support to the ankle and the knee in the early postoperative phase. Knee-ankle-foot orthoses with metal uprights and hinged joints (KAFOs) were developed and used extensively in the 1950s and 60s for children with poliomyelitis. Though KAFOs are still used for ambulation in poliomyelitis and myelomeningocele where there is a need to lock the knee joint, they are not useful for the child with CP because they disturb the gait pattern by locking the knee in extension in the swing phase. Donning the KAFO on and off takes a lot of time and they are difficult to wear. For these reasons, KAFOs for functional ambulation have disappeared from use in children with CP. Use anti recurvatum AFOs or GRAFOs for knee problems in ambulatory children.<br>  
Plastic resting KAFOs extend from below the hips to the toes and stabilise the ankle joint as well as the knee. They are more rigid and provide better support to the ankle and the knee in the early postoperative phase. Knee-ankle-foot orthoses with metal uprights and hinged joints (KAFOs) were developed and used extensively in the 1950s and 60s for children with poliomyelitis<ref>Hachisuka K, Makino K, Wada F, Saeki S, Yashimoto N. Oxygen consumption, oxygen cost and physiological cost index in polio survivors: A comparison of walking without orthosis, with an ordinary or a carbon-fibre reinforced plastic knee-ankle-foot orthosis. J Rehabil Med 2007; 39: 646–650</ref>. Though KAFOs are still used for ambulation in poliomyelitis and myelomeningocele where there is a need to lock the knee joint, they are not useful for the child with CP because they disturb the gait pattern by locking the knee in extension in the swing phase. Donning the KAFO on and off takes a lot of time and they are difficult to wear. For these reasons, KAFOs for functional ambulation have disappeared from use in children with CP. Instead, anti recurvatum AFOs or GRAFOs for knee problems in ambulatory children have proved useful.<br>  
 
Use the plastic KAFO at night and in the early postoperative period after<br>Multi-level surgery to protect the extremity while allowing early mobilization.


=== Care of Orthosis ===
Use the plastic KAFO at night and in the early postoperative period after multi-level surgery to protect the extremity while allowing early mobilisation.
It is important that the orthosis is in good working order and shows minimal signs of wear and tear. Check that components are in good condition and if hinged check they are functioning and locking if needed. Check the fit also and teach client in hygiene and care aspects of orthosis. See video below. <br>{{#ev:youtube|https://www.youtube.com/watch?v=GA_tnK-Oe-g|width}}<ref>nhsggs NHSGGC - Orthotics Patient Information: Orthosis care and repair Available from: https://www.youtube.com/watch?v=GA_tnK-Oe-g (last accessed 6.11.2019)</ref>
==== Hip Abduction Orthoses  ====


=== Hip Abduction Orthoses ===
Consider using hip abduction orthoses in children with hip adductor tightness to protect hip range of motion and prevent the development of subluxation. One clear indication for hip abduction orthoses is the early period after adductor lengthening.  
Consider using hip abduction orthoses in children with hip adductor tightness to protect hip range of motion and prevent the development of subluxation. One clear indication for hip abduction orthoses is the early period after adductor lengthening.  


=== Spinal Orthotics ===
=== Spinal Orthotics ===


There are various types of braces used for spinal deformity. This braces are not prescribed in order to stop the progression of scoliosis but to provide better sitting balance. As most children with scoliosis need spinal surgery to establish and maintain sitting balance in the long run. A thoraco-lumbo-sacral brace helps the child to sit better during the growth spurt period when spinal deformity becomes apparent, progresses fast and the child out grows custom molded seating devices quickly. Children who are not candidates for surgery for different reasons may use spinal braces instead of seating devices for better sitting.  
There are various types of braces used for spinal deformity. This braces are not prescribed in order to stop the progression of scoliosis but to provide better sitting balance. As most children with scoliosis need spinal surgery to establish and maintain sitting balance in the long run. A thoraco-lumbo-sacral brace helps the child to sit better during the growth spurt period when spinal deformity becomes apparent, progresses fast and the child out grows custom molded seating devices quickly. Children who are not candidates for surgery for different reasons may use spinal braces instead of seating devices for better sitting.  


=== Upper Limb Orthotics ===
=== Upper Limb Orthotics ===
[[File:Resting wrist hand brace.jpeg|right|frameless|267x267px]]
[[File:Resting wrist hand brace.jpeg|right|frameless|267x267px]]
The indications of bracing in the shoulder and elbow are very limited. An example of a resting splint is a thermoplastic resting wrist and hand splint which keeps the wrist in 10-20 degrees extension, the metacarpal phalangeal joint(MPJ) in 60 degrees flexion and the interphalangeal joint (IPJ) in extension ( see figure on R). This type of splint is used at night and during periods of inactivity with the hope of preventing deformity. An example of a functional splint is an opponents splint, which can be used in everyday activities. Hand orthoses may inhibit the active use of the extremity and effect sensation of the hand in a negative way. Use them only in the therapy setting or at school and take them off during other times in the day.<br><br>These are the most known type of orthoses used in one stage of the Cerebral Palsy Treatment Plan, bearing in mind with Cerebral Palsy a periodical orthosis assessment has to be done in order to decide if there is a need for changing the design or type.  
The indications of bracing in the shoulder and elbow are very limited. An example of a resting splint is a thermoplastic resting wrist and hand splint which keeps the wrist in 10-20 degrees extension, the metacarpal phalangeal joint(MPJ) in 60 degrees flexion and the interphalangeal joint (IPJ) in extension ( see figure on R). This type of splint is used at night and during periods of inactivity with the hope of preventing deformity. An example of a functional splint is an opponents splint, which can be used in everyday activities. Hand orthoses may inhibit the active use of the extremity and effect sensation of the hand in a negative way. Use them only in the therapy setting or at school and take them off during other times in the day.<br><br>These are the most known type of orthoses used in one stage of the Cerebral Palsy Treatment Plan, bearing in mind with Cerebral Palsy a periodical orthosis assessment has to be done in order to decide if there is a need for changing the design or type.  
==== Care of Orthosis ====
It is important that the orthosis is in good working order and shows minimal signs of wear and tear. Check that components are in good condition and if hinged check they are functioning and locking if needed. Check the fit also and teach client in hygiene and care aspects of orthosis. See video below. <br>{{#ev:youtube|https://www.youtube.com/watch?v=GA_tnK-Oe-g|width}}<ref name=":4">nhsggs NHSGGC - Orthotics Patient Information: Orthosis care and repair Available from: https://www.youtube.com/watch?v=GA_tnK-Oe-g (last accessed 6.11.2019)</ref>
== Orthotic Prescription  ==
== Orthotic Prescription  ==


=== Lower Limb Orthoses for Ambulatory Children (GMFCS I, II and III)  ===
=== Lower Limb Orthoses for Ambulatory Children (GMFCS I, II and III)  ===
Ambulatory children diagnosed with cerebral palsy, categorised under GMFCS levels I, II, and III, exhibit various degrees independent walking. Their mobility can be notably enhanced through the tailored application of lower limb orthotics. The strategic use of these devices not only optimises gait mechanics but also offers vital support for maintaining balance and minimising energy expenditure during ambulation. Ultimately, these measures serve to boost the child's functional abilities.<ref name=":0">Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. European journal of neurology. 2001 Nov;8:98-108.</ref>


Ambulatory children with Cerebral Palsy often present with numerous gait deviations that&nbsp;primarily result from the loss of selective motor control, decreased muscle strength&nbsp;and abnormal muscle tone <ref name=":0">Brehm MA, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med. [Research Support, Non-U.S. Gov't]. 2008 Jul;40(7):529-34.</ref>.&nbsp;These motor disorders of Cerebral Palsy&nbsp;are frequently accompanied by disturbances of sensation, perception, cognition, communication, behaviour and epilepsy&nbsp;<ref>Rosenbaum P. Cerebral palsy: what parents and doctors want to know. Bmj. [Review]. 2003 May 3;326(7396):970-4.</ref>. Hence, the orthotic management of ambulatory children with Cerebral Palsy requires comprehensive rehabilitation using age-appropriate interventions that encompass the ICF domains of body function and structure, activity and participation, personal and environmental factors&nbsp;<ref name=":1">Battaglia M RE, Bolla A, Chiuso A, Bertelli S, Pellegri A, Borri G, Martinuzzi A International classification of functioning, disability and health in a cohort of children with cognitive, motor and complex disabilities. Dev Med Child Neurol. 2004;46:98-106.</ref>. Orthoses are used to manage the secondary musculoskeletal problems of muscle contracture and bony deformity. Without appropriate orthotic intervention, detrimental changes to the gait and function of the child with Cerebral Palsy will occur over less than two years&nbsp;<ref>Bell KJ, Ounpuu S, DeLuca PA, Romness MJ. Natural progression of gait in children with cerebral palsy. J Pediatr Orthop. 2002 Sep-Oct;22(5):677-82.</ref>.<br>
Key concerns typically addressed by orthotics in ambulatory children within GMFCS levels I, II, and III include:


A diagnosis of CP does not correlate with any clearly defined rehabilitative intervention strategies, nor does it correlate with a defined set of expected outcomes for the child and family <ref name=":2">Stanger M, Oresic S. Rehabilitation approaches for children with cerebral palsy: overview. J Child Neurol. [Review]. 2003 Sep;18 Suppl 1:S79-88.</ref>.&nbsp;To provide effective orthotic intervention for children with Cerebral Palsy it is important to clearly identify the functional abilities of each child in order to establish the aims of any orthotic intervention. Through a consensus conference in 1994, the International Society of Prosthetics and Orthotics (ISPO) identified the aims of lower limb orthotic management of cerebral palsy as:  
* '''Correct Alignment:''' Some children may experience lower limb alignment deviations, such as excessive foot pronation or supination, knee valgus or varus, or hip internal rotation during walking. Corrective orthotics are specifically designed to counter these deviations, fostering better alignment and promoting an optimal walking posture.<ref name=":6">Morris C. A review of the efficacy of lower-limb orthoses used for cerebral palsy. Developmental medicine and child neurology. 2002 Mar;44(3):205-11.</ref> By improving alignment, orthotic devices enhance stability and reduce the risk of falls. This increased stability not only boosts the child's confidence whilst walking but also encourages more independent exploration of their environment.<ref name=":7">Rethlefsen S, Kay R, Dennis S, Forstein M, Tolo V. The effects of fixed and articulated ankle-foot orthoses on gait patterns in subjects with cerebral palsy. Journal of Pediatric Orthopaedics. 1999 Jul 1;19(4):470-4.</ref>


#To correct and/or prevent deformity.  
* '''Support Weak Muscles:'''Muscle weakness is a recurrent issue among children with cerebral palsy, potentially affecting their overall mobility and stability when walking.Orthotics provide the necessary support to compensate for this weakness, aiding in balance and movement control.<ref name=":8">Buckon CE, Thomas SS, Jakobson-Huston S, Moor M, Sussman M, Aiona M. Comparison of three ankle–foot orthosis configurations for children with spastic diplegia. Developmental medicine and child neurology. 2004 Sep;46(9):590-8.</ref>
#To provide a base of support.
#To facilitate training in skills.  
#To improve the efficiency of gait&nbsp;<ref>Condie DN MC. Conclusions and recommendations: Reoprt of a consesus conference on the lower limb orthotic management of cerebral palsy. Copenhagen: International Society of Prosthetics and Orthotics 1994.</ref>


A literature review conducted by Figuerdo et. al <ref name=":3">Figueiredo EM, Ferreira GB, Maia Moreira RC, Kirkwood RN, Fetters L. Efficacy of ankle-foot orthoses on gait of children with cerebral palsy: systematic review of literature. Pediatr Phys Ther. [Review]. 2008 Fall;20(3):207-23.</ref> and a report from the ISPO Cerebral Palsy Consensus Conference of 2008 <ref>Morris C, Condie D, Fisk J. ISPO Cerebral Palsy Consensus Conference Report (available free at http://www.ispoweb.org). Prosthet Orthot Int. [Letter]. 2009 Dec;33(4):401-2.</ref>criticised the evidence base relating to the orthotic management of children with Cerebral Palsy. Both documents identified a relatively low amount of research that dealt specifically with the orthotic management of children with Cerebral Palsy.<br>  
* '''Improving Balance and Coordination:''' Maintaining balance and coordinating movements can pose significant challenges for children with cerebral palsy. Orthotics play a pivotal role in helping these children navigate their environments safely and confidently.<ref>Lam WK, Leong JC, Li YH, Hu Y, Lu WW. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait & posture. 2005 Nov 1;22(3):189-97.</ref>


They also found many of these studies employed poor methodologies causing the evidence to be of a lower scientific quality. Hence, it was recommended in both the literature review and the consensus conference that future studies have more robust methodologies and provide more in-depth descriptions of the participant presentations, the methods used and the orthotic interventions provided&nbsp;<ref>Ridgewell E, Dobson F, Bach T, Baker R. A systematic review to determine best practice reporting guidelines for AFO interventions in studies involving children with cerebral palsy. Prosthet Orthot Int. [Review Validation Studies]. 2010 Jun;34(2):129-45.</ref>. This will allow the results from future studies to be transferrable to clinical practice.<br>  
* '''Improving Energy Efficiency:''' Orthotic devices can also help optimise energy use during walking, crucial for preventing fatigue and improving endurance. By mitigating excessive movements and compensatory patterns, orthotics can contribute to more energy-efficient gait.<ref>Brehm MA, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. Journal of rehabilitation medicine. 2008 Jul 1;40(7):529-34.</ref> By minimising unnecessary muscle effort and compensatory patterns, lower limb orthotics enhance the energy efficiency of the child's gait. This enables the child to walk for longer periods and participate in physical activities with less fatigue.<ref>Radtka SA, Skinner SR, Dixon DM, Johanson ME. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Physical therapy. 1997 Apr 1;77(4):395-409.</ref>


The incomplete reporting of orthoses in the scientific literature was highlighted as a major area of concern in the literature review and the consensus report. Many studies evaluating the efficacy of orthotic intervention in children with Cerebral Palsy simply described the orthosis being tested as an ‘AFO’. Without sufficient details on the construction material, trim lines used and alignment of the AFOs, it is impossible to replicate the orthosis and allow an orthotist to transfer the orthotic design to their own clinical practice. Ridgewell et &nbsp;produced a systematic literature review to evaluate the level and quality of detail reported about participants, devices and testing protocols to generate best practice guidelines for reporting of orthoses in future studies examining children with Cerebral Palsy. They reiterated that many of the papers failed to provide sufficient information that could allow the synthesis of the information to contribute to the orthotic evidence base.<br>The body of knowledge on the efficacy of AFOs will gradually grow using well designed studies and provided homogenous patient groups are measured, relevant outcome measures are used and the AFOs evaluated in the study are unambiguously mechanically characterised <ref>Harlaar J, Brehm M, Becher JG, Bregman DJ, Buurke J, Holtkamp F, et al. Studies examining the efficacy of ankle foot orthoses should report activity level and mechanical evidence. Prosthet Orthot Int. 2010 Sep;34(3):327-35.</ref>.&nbsp;
Orthotics also contribute to a smoother, more natural gait. By rectifying alignment issues and addressing muscle imbalances, these devices assist with improving foot clearance during the swing phase of the gait cycle, facilitating better overall mobility.<ref>Rose GE, Lightbody KA, Ferguson RG, Walsh JC, Robb JE. Natural history of flexed knee gait in diplegic cerebral palsy evaluated by gait analysis in children who have not had surgery. Gait & posture. 2010 Mar 1;31(3):351-4.</ref>


Despite some shortcomings in the current literature, there is sufficient evidence available to establish 4 key points on the efficacy of the orthotic management of children with Cerebral Palsy:  
Through these benefits, orthotic interventions have emerged as an invaluable tool in the rehabilitation and support of children living with cerebral palsy, empowering them to lead a more independent and active life.<ref>Kerkum YL, Buizer AI, Van Den Noort JC, Becher JG, Harlaar J, Brehm MA. The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PloS one. 2015 Nov 23;10(11):e0142878.</ref>


#AFOs provide positive influences on the temporal spatial characteristics, kinematics and kinetics of gait in children with Cerebral Palsy.
=== Lower Limb Orthoses for Non-Ambulatory Children (Pre-standing and GMFCS IV and V)  ===
#AFOs can reduce metabolic cost and the energy expenditure of walking.
#AFOs provide positive effects on ability and function.
#‘Tuning’ the AFO and footwear combination (AFO-FC) is critical to optimise the biomechanical benefits of the orthosis and enable positive influences on the knee and hip joints.


=== Lower Limb Orthoses for Non-Ambulatory Children (Pre-standing and GMFCS IV and V)  ===
Orthotic devices for children with cerebral palsy classified as pre-standing and within GMFCS levels IV and V are tailored to address specific functional needs, including alignment, stability during weight-bearing activities, and prevention of contractures and deformities.<ref name=":6" /> These devices enhance comfort, optimise postural control, and support functional capabilities.<ref name=":7" />


==== Hip Instability&nbsp;(GMFCS IV and V) ====
* '''Hip Instabiliity:''' Hip instability is a common issue among children with cerebral palsy classified under GMFCS levels IV and V. To manage this, orthotic devices are used to enhance hip stability, provide support, and prevent the development of contractures or deformities.[ref] Orthoses can improve alignment, limit pain, reduce risk of hip dislocation, and optimise function and comfort. By doing so, they contribute to a better quality of life for these children.[ref]
* '''Ankle Foot Orthoses''': Ankle Foot Orthoses (AFOs) are often recommended for children with cerebral palsy classified under GMFCS levels IV and V. They aid in foot positioning, improve stability, and prevent contractures.<ref name=":8" /> AFOs can contribute to better alignment and stability, reduce muscle imbalances, and optimise gait. They can be specifically tailored to meet individual functional needs, promoting better mobility and comfort. <ref>Rodda JM, Graham HK, Carson L, Galea MP, Wolfe R. Sagittal gait patterns in spastic diplegia. The Journal of bone and joint surgery. British volume. 2004 Mar;86(2):251-8.</ref>
* '''Spinal Orthoses:'''Children with cerebral palsy categorised under GMFCS levels IV and V can benefit from spinal orthoses, especially when experiencing spinal deformities or complications such as scoliosis. Spinal orthoses are used to improve spinal alignment and stability, and slow the progression of spinal deformities.<ref>Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy.</ref>  Spinal orthoses can improve alignment, provide support, and enhance comfort, thereby improving quality of life for children with cerebral palsy in these GMFCS categories.<ref>Miller A, Temple T, Miller F. Impact of orthoses on the rate of scoliosis progression in children with cerebral palsy. Journal of Pediatric Orthopaedics. 1996 May 1;16(3):332-5.</ref>


Hip subluxation and dislocation due to spasticity is the second most common musculoskeletal deformity seen in children with CP. The GMFCS level of the child is strongly associated with hip displacement, as the lower levels of motor function have increased predictive rates of hip displacement. The overall incidence has been described in the literature at around 35% with variances of around 1% of children with spastic hemiplegia affected up to 75% of children with spastic quadriplegia&nbsp;<ref>Shore B, Spence D, Graham HK. The role for hip surveillance in children with cerebral palsy. Curr Rev Musculoskelet Med. 2012 Jun; 5(2): 126-134.</ref>. Hip displacement that leads to subluxation is associated with greater functional activity limitations, increased pain, development of pelvic obliquity and in turn progressive scoliosis. <br>There is no evidence that hip abduction orthoses prevent progressive hip displacement over time. A randomized control trial monitored children over one year and compared the use of botulinum toxin type A (BoNT-A) to the adductors and hamstrings and a variable hip abduction orthosis (SWASH) with a control group that received physiotherapy but no orthoses on gross motor function, hip displacement and surgery rates. There were no significant differences between the groups at one year follow up in either the control group or those that received BoNT-A and a hip abduction orthosis. A long term follow-up of three years to this original study found that BoNT-A and hip abduction bracing does not reduce the need for surgery or improve hip development at skeletal maturity&nbsp;<ref>Willoughby K, Ang SG, Thomson P, Graham HK. The impact of botulinum toxin A and abduction bracing on long-term hip development in children with cerebral palsy. Dev Med Child Neurol. 2012 Aug;54(8): 743-7</ref>.  
== Orthotic Management ==


<br>While hip abduction orthoses cannot prevent the development and progression of hip displacement and subluxation, they may improve sitting posture, symmetry and comfort in non-ambulant children. Ambulant children may also gain some benefit from hip orthoses that control adduction by decreasing the effects of a scissoring gait, leading to increased standing stability and gait efficiency. There is little evidence to support the widespread provision of a hip abduction orthoses for children with CP. The prescription of hip orthoses for both ambulant and non-ambulant children must be on a case by case basis. The prescription must be intrinsically linked to pre-determined rehabilitation goals and objectively assessed with appropriate outcome measures. If it is found that the hip abduction orthosis is not achieving the rehabilitation goals wear should be stopped.
=== Lower Limb Transverse Plane and Coronal Plane Deformities  ===


==== Ankle Foot Orthoses (GMFCS IV and V)  ====
The identification of the primary cause of lower limb transverse and coronal plane deformities is imperative to selecting appropriate orthotic interventions.<ref name=":0" />  A systematic review by Hudson et al. (2020) highlighted that orthoses can have a positive impact on gait parameters and can improve gross motor function, especially in children with spastic CP.<ref>Hudson D, Michalowski H, Miller F. Lower Extremity Orthoses for Children and Youth with Cerebral Palsy. Cerebral Palsy. 2020:2999-3021.</ref> Evidence also suggests that orthotic management, as part of a comprehensive therapeutic intervention, can potentially decrease the progression of these deformities.<ref>Hägglund G, Lauge-Pedersen H, Wagner P. Characteristics of children with hip displacement in cerebral palsy. BMC musculoskeletal disorders. 2007 Dec;8:1-6.</ref>


Children in GMFCS levels IV and V will spend a large amount of their time in seated positions, meaning they are more likely to develop flexion contractures. It has been found that maintaining a spastic muscle in maximum extension for 6-8 hours can help to reduce the development of flexion contractures&nbsp;<ref>Tardieu C, Lespargot A, Tabary C, Bret MD. For how long must the soleus muscle be stretched each day to prevent contracture? Dev Med Child Neurol. 1988 Feb;30(1):3-10.</ref>. AFOs for this group of children are often prescribed to manage the resultant equinus deformity at the foot and ankle with the functional goals of ensuring the child is able to use a standing frame and perform assisted standing transfers if appropriate. However, the gastrocnemius muscle is a bi-articulate muscle, meaning that it crosses both the knee and ankle joints. To provide an appropriate stretch of the gastrocnemius muscle, it is crucial the knee is held in maximum extension with the foot and ankle in maximum dorsiflexion. Therefore, AFOs must be combined with another orthosis such as a stiffened fabric gaiter or a 3 point knee brace to ensure the gastrocnemius is stretched. AFOs may also be used to manage coronal and transverse plane deformities of the foot in children with GMFCS levels IV and V. Mobile deformities including rear foot varus/valgus and forefoot abduction/adduction and supination/pronation, may be corrected in the casting process and controlled using solid AFOs. Any fixed deformity must be accommodated and maintained in their ‘best’ corrected or most neutral position.
==== Leg Length Discrepancies ====
Leg Length Discrepancies (LLDs) are frequently observed in children diagnosed with hemiplegia, owing to conditions such as Developmental Dysplasia of the Hip (DDH) and the uneven pressure exerted on limbs causing a decrease in bone growth. Resultantly, this can lead to pelvic obliquity and functional constraints like the reduced ability for contralateral hip adduction and ipsilateral hip abduction. An effective strategy to rectify this is the implementation of a shoe raise which can help realign the pelvis and improve functional capacity1.


==== Spinal Orthoses (GMFCS IV and V)  ====
==== Management of Torsional Deformities ====
Observations of gait patterns in children exhibiting torsional deformities often reveal an 'in-toeing' or 'scissor' gait. In such cases, a comprehensive evaluation of the lower limb's rotational profile is of paramount importance. This assessment allows the orthotist to distinguish between muscular or bony origins of the torsional deformity. Femoral and tibial rotational deformities along with any fixed muscle contracture are primarily surgical issues and are not usually managed with orthotics2.<br>


Children with CP who are more limited in their functional ability are at a greater risk of developing combinations of scoliosis, lordosis and kyphosis. The more severe the deficit, the more likely is spinal deformity to occur, the earlier the age of onset, and curves are likely to be more severe. The progression of the curve becomes more apparent during spinal growth and will continue into adult life. In general, if a child with CP is able to walk, then the chances of developing a severe scoliosis is much less likely compared with wheelchair dependent children. Scoliosis in children with CP has been linked to the effects of gravity when they are placed in a seated position for long periods of time&nbsp;<ref>Madigan RR, Wallace SL. Scoliosis in the institutionalized cerebral palsy population. Spine. 1981;6:583-590</ref>.<br>The use of spinal orthoses is first line treatment for children with CP who have a related spinal deformity. There is a little evidence to support the use of spinal bracing and provision is on an individual case basis. Any prescription of a spinal orthosis must be combined with the use of seating and sleep systems and also include the use of a standing frame and/or orthoses to help reduce the effects of gravity on the spine and digestive system in the seated position.<br> <br>Rigid thermoplastic spinal braces (Thoraco Lumbar Spinal Orthoses similar to those used to manage idiopathic scoliosis, are often not well tolerated by children with Cerebral Palsy as there has been reports of reduced tolerance due to pressure sores and skin irritation <ref>Bunnell WP, MacEwan GD. Non-operative treatment of scoliosis in cerebral palsy: preliminary report on the use of a plastic body jacket. Develop Med Child Neurol. 1977;19:45-9.</ref>.&nbsp;TLSOs that are made of more flexible material such as polyethelyne, have been found to be better tolerated and provide improved head and trunk control, improved postural position and increased sitting stability <ref>Terjesen T, Lange JE, Steen H. Treatment of scoliosis with spinal bracing in quadriplegic cerebral palsy. Dev Med Child Neurol. 2000 Jul;42(7):448-54.</ref>&nbsp;<ref>Vekerdy Z. Management of seating posture of children with cerebral palsy by using thoracic-lumbar-sacral orthosis with non-rigid SIDO frame. Disabil Rehabil. 2007;Sep 30;29(18):1434-41.</ref>.&nbsp;Although spinal curves appear to progress in most non-ambulant children with Cerebral Palsy, there is a small cohort fitted with a semi-rigid TLSO that experience either slowing of the rate of progression or halting of curve progression. It appears that the more flexible curves respond better to orthotic intervention and this is a good predictor for prescription of a spinal orthosis.
=== Tuning of Ankle Foot Orthosis and Footwear (AFO-FC) Combination  ===
== Orthotic Management  ==


=== Lower Limb Transverse Plane and Coronal Plane Deformities  ===
Proper tuning of the AFO-FC is critical in maximising its positive impact on gait mechanics, particularly for children with CP. This fine-tuning process involves making detailed adjustments to the orthosis design to optimise its function during walking activities1.


The identification of the primary cause of lower limb transverse and coronal plane deformities is imperative to selecting appropriate orthotic interventions. Leg Length Discrepancies (LLDs) are common in children with hemiplegia due to Developmental Dysplasia of the Hip (DDH) and/or uneven loading of the limbs leading to decreased bone growth. The resultant pelvic obliquity and functional deficits of contralateral hip adduction and ipsilateral hip abduction can be addressed by using a shoe raise. <br>
== The Role of Ground Reaction Force (GRF) ==
Effective gait requires precise muscular control to properly align the GRF with respect to the ankle, knee, and hip joints during the stance phase. For a child with CP, managing GRF can be challenging due to their compromised neuromuscular condition. That's where AFOs come into play, as they are designed to assist in controlling lower limb movements, thereby positively influencing gait kinetics and kinematics.


A ‘scissor’ gait or ‘in-toeing’ gait are commonly observed gait deviations in the presence of torsional deformities of the lower limb. In this instance it is crucial that a rotational profile of the lower limbs is performed. This will permit the orthotist to determine if the torsional deformity is of bony or muscular origin. Femoral and tibial rotational deformities and any fixed muscle contracture require surgical correction and cannot be managed with orthoses. Orthoses that have been used to manage torsional deformities largely rely upon derotating the affected limb through the use of ‘twister cables’ within a Hip Knee Ankle Foot Orthosis (HKAFO) or through the use of fabric garments. It is not recommended to provide a derotational orthosis that crosses the knee joint, as the applied torque leads to excessive strain on the soft tissues of the knee joint. <br>
A common misconception is that achieving optimal knee extension during the stance phase requires a 90° positioning of the talo-cural joint. However, the key lies in maintaining an appropriate Shank to Vertical Angle (SVA), defined as the angle between the tibial shank and the vertical plane in the sagittal plane2.


=== Tuning the Ankle Foot Orthosis and Footwear Combination  ===
In typically developed children and those with CP, the optimum SVA angle during mid-stance ranges between 7° to 15° of inclination, with an ideal target of 10° to 12°. Achieving this SVA permits the vertical progression of the pelvis and trunk, ensuring optimal alignment of the GRF with respect to the ankle, knee, and hip joints.


For an energy efficient gait, good muscular control is required to ensure appropriate alignment of the GRF relative to the ankle, knee and hip joints throughout stance phase.In the pathological gait of a child with CP, adequate control of the<br>GRF is not always possible due to the compromised neuromuscular system. AFOs are often prescribed to assist with lower limb control in children with CP as they have been shown to positively influence the kinetics and kinematics of gait.<br>To achieve optimal knee extension during the stance phase of gait, there is a common misunderstanding that the talo-cural joint must be positioned at 90° and the tibial and thigh shanks vertically aligned.This has lead to the misconception that the AAAFO should be set at 90° and that dorsi flexed or plantar grade AFOs are acceptable but that plantar flexed AFOs are not.<ref name=":0" /> <ref name=":1" />
In the process, the parameters that are commonly adjusted include the heel's height, type and design, and the design and location of the rocker at the metatarsal heads. The design of the AFO and the type and stiffness of the material used for its construction all impact its effect on the child's gait3.


The Shank to Vertical Angle (SVA) is defined as the angle of the tibial shank relative to the vertical in the sagittal plane and may be described in degrees of incline or recline from the vertical.<ref name=":0" />  In both typically developed children and children with CP, the optimum angle of the SVA at mid-stance is between 10° to 12° of inclination, with the range anywhere between 7° and 15° of inclination. When fitting an AFO to a child with CP, attaining the correct inclination of the SVA permits the thigh segment to become inclined and the pelvis and trunk to progress in a vertical position. Thereby allowing the optimum alignment of the GRF in relation to the ankle, knee and hip joints during stance phase. During stance phase, the thigh and tibial shanks are at no time aligned vertically with the AAAFO positioned at 90° and a SVA of 0°. This proves that the AAAFO and the SVA are actually independent of each other. With the assistance of wedging or shoe modifications it is possible to set the AAAFO at any angle and still achieve the desired SVA to optimise the position of the GRF during stance phase.  
The goal of the tuning process is to ensure the AFO provides the necessary control at the foot and ankle during the stance phase. This helps resist undesirable dorsiflexion, often referred to as 'buckling', and allows for the GRF to be maintained in a desired position with respect to the knee and hip joints.


Ankle Foot Orthosis and Footwear Combination (AFO-FC) tuning is defined as the process whereby fine adjustments are made to the design of the AFO-FC to optimise its performance during a particular activity, namely walking. The type and stiffness of the material used for manufacture of the orthosis, as well as the design of the AFO, will alter the effect of the orthosis on a child’s gait. For AFO-FC tuning to be successful, it is imperative the design and material properties of the AFO provide the desired level of control at the foot and ankle during stance phase. This is to resist unwanted dorsiflexion or ‘buckling’ of the AFO at the ankle joint and ensure the alignment of the GRF in relation to the knee and hip joints can be maintained in the desired position throughout stance phase. 
Moreover, heel height adjustments of as little as 3mm can cause angular changes in the SVA of up to 2°. Hence, minor adjustments can have a significant effect on gait characteristics4.


Early work on the AFO-FC described the effects of the heel height of a shoe on the&nbsp;temporo spatial characteristics of gait in normal subjects wearing AFOs.[6] Small&nbsp;changes in shoe height by as much as 3mm can cause angular changes in the SVA of up to 2°<ref name=":2" />In current practice, the common parameters adjusted during AFO-FC tuning include the height of the heel, type and design of the heel and design and position of the rocker at the metatarsal heads. AFO-FC tuning has been proven to have positive effects on the gait of children with CP, via the manipulation of the GRF and optimising the biomechanical alignment.This is provided the AAAFO accommodates any shortening of the gastrocnemius muscle, the AFO is designed to adequately control the foot and ankle and any proximal muscle contractures or spasticity are addressed before AFO-FC tuning. It has been suggested AFO-FC tuning with kinematic and kinetic monitoring should become routine clinical practice. <ref name=":3" /> However, time and access to a gait laboratory for video vector gait analysis are the major barriers to routine kinematic and kinetic monitoring of the AFO-FC tuning process.  
Although it is recommended that AFO-FC tuning becomes routine in clinical practice, time constraints and access to a gait laboratory for video vector gait analysis often pose challenges. However, the benefits of tuning, which include optimised biomechanical alignment and an enhanced gait, make it a worthwhile part of treatment plans for children with CP.


== Benifits of using those orthoses for a child with CP ==
== Benefits of using those orthoses for a child with CP ==


When an orthotic device is a successfully part of treatment, then it should help children establishing normal conditions of joint motion and muscle function as much as possible.  
When an orthotic device is a successfully part of treatment, then it should help children establishing normal conditions of joint motion and muscle function as much as possible.  
Line 196: Line 204:
[[Category:Occupational Health]]
[[Category:Occupational Health]]
[[Category:Prosthetics and Orthotics]]
[[Category:Prosthetics and Orthotics]]
[[Category:Assistive devices]]
[[Category:Assistive Technology]]
[[Category:Interventions]]
[[Category:Interventions]]
[[Category:Paediatrics]]
[[Category:Paediatrics]]
[[Category:Paediatrics - Interventions]]
[[Category:Paediatrics - Interventions]]
[[Category:ICRC Cerebral Palsy Content Development Project]]
[[Category:ICRC Cerebral Palsy Content Development Project]]
[[Category:Course Pages]]

Latest revision as of 10:33, 2 November 2023

Introduction[edit | edit source]

AFO-Swedish-Leaf-Side-Shoe.jpg

An orthosis by definition, is "an externally applied device used to modify the structural and functional characteristics of the neuromuscular and skeletal system"[1].

Why are the interdisciplinary team members convinced to use the orthoses as part of the treatment plan?

Because of the comprehensive understanding of the Cerebral Palsy(CP) patients, concentrating on the function limitations has a great effect on the new range of improved designs of orthoses to improve the outcome for the benefit of the patient.
In 1994 during the consensus conference held in Duke University, ISPO (International Society for Prosthetics and Orthotics) identified the goals of the lower limb orthotic management of CP. The identified goals can also be applied in postural impairments of the trunk and upper limbs[2]. The identified goals were:

  • To correct and/or prevent deformity
  • To provide a base of support
  • To facilitate training in skills
  • To improve the efficiency of gait

It is important that the interdisciplinary team check the patient’s functional limitations according to the GMFCS in order to plan the treatment. The type and design of the orthosis is decided accordingly and can be changed periodically depending on the improvement of the patient condition.

Types of Orthotics[edit | edit source]

Under the International Standard terminology, orthoses are classified by an acronym describing the anatomical joints which they contain. For example, an ankle foot orthosis ('AFO') is applied to the foot and ankle, a thoracolumbosacral orthosis ('TLSO') affects the thoracic, lumbar and sacral regions of the spine. It is also useful to describe the function of the orthosis.
Types of orthoses which can be used for individuals with Cerebral Palsy are shown in the short video below then described in greater detail in the text that follows.

Orthotics described in this page:

Lower Limb

  • Foot Orthoses
  • Supramalleolar Orthosis
  • Ankle foot Orthoses (Dynamic, solid, posterior leaf spring, ground reaction, hinged)
  • Knee Orthoses (Immobilisers, plastic knee ankle orthoses)
  • Hip abduction orthoses

Spinal Orthoses (Thoraco-Lumbar-Pelvic Brace)

Upper Limb (Resting Hand and Wrist Splint)


[3]

Lower Limb Orthotic Designs[edit | edit source]

Lower limb orthotics are a vital component of orthotic rehabilitation for individuals with various conditions, including cerebral palsy. These orthotic devices are specifically designed to support, align, and improve the function of the lower extremities. They play a crucial role in addressing a wide range of issues, such as foot deformities, gait abnormalities, muscle weakness, and joint instability. By providing external support and optimising biomechanics, lower limb orthotics aim to enhance mobility, promote efficient movement patterns, and improve overall quality of life for individuals with cerebral palsy.

Foot Orthoses (FO)[edit | edit source]

Foot orthotics do not prevent deformity. They provide a better contact of the sole of the foot with the ground. Foot orthoses are commonly prescribed to correct alignment issues and provide support for the foot.

Foot orthoses help improve foot stability, correct excessive pronation or supination, and promote optimal foot alignment. By providing support and redistributing pressures, foot orthoses enhance balance and reduce the risk of falls. They can also improve foot function during the stance phase of gait by optimising weight-bearing and promoting efficient movement patterns.

Supramalleolar Orthosis (SMO)[edit | edit source]

This orthosis extends to just above the malleoli and to the toes. Consider in mild dynamic equinus, varus and valgus instability. Supramalleolar orthoses are typically prescribed to address ankle and foot instability while allowing freedom of movement.

SMOs provide support to the ankle while allowing normal ankle motion. They enhance ankle stability and correct alignment issues, which can improve balance and prevent ankle sprains. SMOs primarily aid in the stance phase of gait by providing stability during weight-bearing activities.

University of California Biomechanics Laboratory Orthosis (UCBL): The medial side is higher than the lateral, holds the calcaneus more firmly, supports the longitudinal arch. Prescribed for hind and midfoot instability.

Ankle Foot Orthoses (AFO)[edit | edit source]

The AFO is the basic orthosis in CP and is a crucial piece of equipment for many children with spastic diplegia. The main function of the AFO is to maintain the foot in a plantigrade position. This provides a stable base of support that facilitates the function and also reduces tone in the stance phase of the gait.

AFOs improve ankle stability, correct foot alignment, and facilitate a more functional gait pattern. For individuals with foot drop, AFOs help prevent the foot from dragging during the swing phase of gait. They provide ankle support during the stance phase, improving balance and preventing ankle sprains. AFOs can also correct equinus deformity (toe walking) and promote a smoother, more energy-efficient gait. There are various types of the AFO.

Dynamic AFO (DAFO)[edit | edit source]

Dynamic AFOs are commonly prescribed for individuals with weak or spastic muscles, who require assistance with foot clearance during the swing phase.

Dynamic AFOs incorporate a hinge mechanism that allows controlled movement during specific phases of gait. They assist with foot clearance during swing phase by providing dorsiflexion assistance, helping individuals clear their toes and prevent tripping.

Solid AFO [edit | edit source]

Solid AFOs are prescribed to provide maximum stability and control for individuals with significant muscle weakness or joint instability.

The solid or rigid AFO allows no ankle motion, it covers the back of the leg completely and extends from just below the fibular head to metatarsal heads. The solid AFO enables heel strike in the stance phase and toe clearance in the swing phase. It can improve knee stability in ambulatory children. It also provides control of varus/ valgus deformity.

Benefits and Function: Solid AFOs offer rigid support to stabilise the ankle and foot. They correct alignment issues, improve balance, and provide substantial control during weight-bearing activities. Solid AFOs can improve stability during stance phase, preventing ankle collapse and offering a secure base of support for walking.

Solid AFOs provides ankle stability in the standing frame in non-ambulatory children.

Posterior Leaf Spring AFO (PLSO)[edit | edit source]

A Posterior Leaf Spring AFO is a rigid AFO trimmed behind the malleoli’s to provide flexibility at the ankle and allows passive ankle dorsiflexion during the stance phase. A PLSO provides smoother knee-ankle motion during walking while preventing excessive ankle dorsiflexion Varus-valgus control is also poor because it is repeatedly deformed during weight bearing. A PLSO is an ideal choice in mild spastic equinus. Do not use it with patients who have crouch gait and pes valgus.

Posterior leaf spring AFOs help facilitate toe clearance during the swing phase by providing a gentle plantarflexion moment at the ankle. They assist with foot clearance, allowing for a smoother, more natural gait pattern. By addressing foot drop, these AFOs contribute to improved balance and reduced tripping risk.

Ground Reaction AFO (GRAFO)[edit | edit source]

This AFO is made with a solid ankle, the upper portion wraps around the anterior part of the tibia proximally with a solid front over the tibia. The rigid front provide strong ground reaction support for patients with weak triceps surae. The foot plate extends to the toes. The ankle may be set in slight plantar flexion of (2-3 degrees) if more corrective force at the knee is necessary. Use the GRAFO in patients with quadriceps weakness or crouch gait. It is an excellent brace for patients with weak triceps surae following hamstring lengthening. Children with static or dynamic knee flexion contractures (more than 15 degrees) do not get benefit out of it and do not tolerate the GRAFO.

Ground reaction AFOs are prescribed for individuals with weak lower leg muscles, instability, or excessive knee flexion during stance. Ground reaction AFOs use a design that applies forces to the lower limb during walking, specifically at the ankle and knee joints. They provide stability, enhance knee extension during stance, and prevent excessive knee flexion or collapse. These AFOs improve overall balance, enhance stability during weight-bearing, and promote a more efficient gait pattern.

Anti-Recurvatum AFO[edit | edit source]

This special AFO is molded in slight dorsiflexion or has the heel built up slightly to push the tibia forward to prevent hyperextension during stance phase. Anti recurvatum AFOs are prescribed for individuals with hyperextension of the knee during stance phase.

Anti recurvatum AFOs limit knee hyperextension by providing a posterior stop. They improve knee stability, prevent excessive backward bending of the knee, and enhance weight-bearing distribution. These AFOs promote a more controlled and balanced gait by limiting knee hyperextension during the stance phase.

Hinged AFO[edit | edit source]

Hinged AFOs are prescribed for individuals with complex foot and ankle problems, such as severe ankle instability or significant muscle weakness.. They have a mechanical ankle joint usually preventing plantar flexion, but allowing relatively full dorsiflexion during the stance phase of gait. They provide a more normal gait because they permit dorsiflexion in stance phase of the gait, thus making it easier to walk on uneven surfaces and stairs. This is the best AFO for most ambulatory patients. Adjust the plantar flexion stop in (3- 7 degrees) dorsiflexion to control knee hyperextension in stance in children with genu recurvatum. The hinged AFO is contraindicated in children who do not have passive dorsiflexion of the ankle because it may force the midfoot joints into dorsiflexion and cause midfoot break deformity. Knee flexion contractures and triceps weakness are other contraindications where a hinged AFO may increase crouch gait. The AFO may be fitted with a hinge that allows 10 degrees passive dorsiflexion while preventing plantar flexion. This creates a more natural gait.

Hinged AFOs offer adjustability and customizability to address specific foot and ankle issues. They provide stability, correct alignment, and enhance foot and ankle control. Hinged AFOs improve balance, reduce the risk of falls, and facilitate a more functional gait pattern by supporting and aligning the lower limb throughout the gait cycle.

Knee Orthoses[edit | edit source]

Knee orthoses are used as resting splints in the early postoperative period and during therapeutic ambulation. There are two types of knee orthoses, the knee immobilizer and the plastic knee-ankle foot orthosis (KAFO). The use of such splints protects the knee joint, prevents deformity recurrence after multilevel lengthening and enables a safer start to weight bearing and ambulation after surgery.

Knee Immobilisers[edit | edit source]

Knee immobilisers are made of soft elastic material and hold only the knee joint in extension, leaving the ankle joint free. Consider using them in the early postoperative period after hamstring surgery and rectus tendon transfers.

Plastic KAFOs[edit | edit source]

Plastic resting KAFOs extend from below the hips to the toes and stabilise the ankle joint as well as the knee. They are more rigid and provide better support to the ankle and the knee in the early postoperative phase. Knee-ankle-foot orthoses with metal uprights and hinged joints (KAFOs) were developed and used extensively in the 1950s and 60s for children with poliomyelitis[4]. Though KAFOs are still used for ambulation in poliomyelitis and myelomeningocele where there is a need to lock the knee joint, they are not useful for the child with CP because they disturb the gait pattern by locking the knee in extension in the swing phase. Donning the KAFO on and off takes a lot of time and they are difficult to wear. For these reasons, KAFOs for functional ambulation have disappeared from use in children with CP. Instead, anti recurvatum AFOs or GRAFOs for knee problems in ambulatory children have proved useful.

Use the plastic KAFO at night and in the early postoperative period after multi-level surgery to protect the extremity while allowing early mobilisation.

Hip Abduction Orthoses[edit | edit source]

Consider using hip abduction orthoses in children with hip adductor tightness to protect hip range of motion and prevent the development of subluxation. One clear indication for hip abduction orthoses is the early period after adductor lengthening.

Spinal Orthotics[edit | edit source]

There are various types of braces used for spinal deformity. This braces are not prescribed in order to stop the progression of scoliosis but to provide better sitting balance. As most children with scoliosis need spinal surgery to establish and maintain sitting balance in the long run. A thoraco-lumbo-sacral brace helps the child to sit better during the growth spurt period when spinal deformity becomes apparent, progresses fast and the child out grows custom molded seating devices quickly. Children who are not candidates for surgery for different reasons may use spinal braces instead of seating devices for better sitting.

Upper Limb Orthotics[edit | edit source]

Resting wrist hand brace.jpeg

The indications of bracing in the shoulder and elbow are very limited. An example of a resting splint is a thermoplastic resting wrist and hand splint which keeps the wrist in 10-20 degrees extension, the metacarpal phalangeal joint(MPJ) in 60 degrees flexion and the interphalangeal joint (IPJ) in extension ( see figure on R). This type of splint is used at night and during periods of inactivity with the hope of preventing deformity. An example of a functional splint is an opponents splint, which can be used in everyday activities. Hand orthoses may inhibit the active use of the extremity and effect sensation of the hand in a negative way. Use them only in the therapy setting or at school and take them off during other times in the day.

These are the most known type of orthoses used in one stage of the Cerebral Palsy Treatment Plan, bearing in mind with Cerebral Palsy a periodical orthosis assessment has to be done in order to decide if there is a need for changing the design or type.

Care of Orthosis[edit | edit source]

It is important that the orthosis is in good working order and shows minimal signs of wear and tear. Check that components are in good condition and if hinged check they are functioning and locking if needed. Check the fit also and teach client in hygiene and care aspects of orthosis. See video below.

[5]

Orthotic Prescription[edit | edit source]

Lower Limb Orthoses for Ambulatory Children (GMFCS I, II and III)[edit | edit source]

Ambulatory children diagnosed with cerebral palsy, categorised under GMFCS levels I, II, and III, exhibit various degrees independent walking. Their mobility can be notably enhanced through the tailored application of lower limb orthotics. The strategic use of these devices not only optimises gait mechanics but also offers vital support for maintaining balance and minimising energy expenditure during ambulation. Ultimately, these measures serve to boost the child's functional abilities.[6]

Key concerns typically addressed by orthotics in ambulatory children within GMFCS levels I, II, and III include:

  • Correct Alignment: Some children may experience lower limb alignment deviations, such as excessive foot pronation or supination, knee valgus or varus, or hip internal rotation during walking. Corrective orthotics are specifically designed to counter these deviations, fostering better alignment and promoting an optimal walking posture.[7] By improving alignment, orthotic devices enhance stability and reduce the risk of falls. This increased stability not only boosts the child's confidence whilst walking but also encourages more independent exploration of their environment.[8]
  • Support Weak Muscles:Muscle weakness is a recurrent issue among children with cerebral palsy, potentially affecting their overall mobility and stability when walking.Orthotics provide the necessary support to compensate for this weakness, aiding in balance and movement control.[9]
  • Improving Balance and Coordination: Maintaining balance and coordinating movements can pose significant challenges for children with cerebral palsy. Orthotics play a pivotal role in helping these children navigate their environments safely and confidently.[10]
  • Improving Energy Efficiency: Orthotic devices can also help optimise energy use during walking, crucial for preventing fatigue and improving endurance. By mitigating excessive movements and compensatory patterns, orthotics can contribute to more energy-efficient gait.[11] By minimising unnecessary muscle effort and compensatory patterns, lower limb orthotics enhance the energy efficiency of the child's gait. This enables the child to walk for longer periods and participate in physical activities with less fatigue.[12]

Orthotics also contribute to a smoother, more natural gait. By rectifying alignment issues and addressing muscle imbalances, these devices assist with improving foot clearance during the swing phase of the gait cycle, facilitating better overall mobility.[13]

Through these benefits, orthotic interventions have emerged as an invaluable tool in the rehabilitation and support of children living with cerebral palsy, empowering them to lead a more independent and active life.[14]

Lower Limb Orthoses for Non-Ambulatory Children (Pre-standing and GMFCS IV and V)[edit | edit source]

Orthotic devices for children with cerebral palsy classified as pre-standing and within GMFCS levels IV and V are tailored to address specific functional needs, including alignment, stability during weight-bearing activities, and prevention of contractures and deformities.[7] These devices enhance comfort, optimise postural control, and support functional capabilities.[8]

  • Hip Instabiliity: Hip instability is a common issue among children with cerebral palsy classified under GMFCS levels IV and V. To manage this, orthotic devices are used to enhance hip stability, provide support, and prevent the development of contractures or deformities.[ref] Orthoses can improve alignment, limit pain, reduce risk of hip dislocation, and optimise function and comfort. By doing so, they contribute to a better quality of life for these children.[ref]
  • Ankle Foot Orthoses: Ankle Foot Orthoses (AFOs) are often recommended for children with cerebral palsy classified under GMFCS levels IV and V. They aid in foot positioning, improve stability, and prevent contractures.[9] AFOs can contribute to better alignment and stability, reduce muscle imbalances, and optimise gait. They can be specifically tailored to meet individual functional needs, promoting better mobility and comfort. [15]
  • Spinal Orthoses:Children with cerebral palsy categorised under GMFCS levels IV and V can benefit from spinal orthoses, especially when experiencing spinal deformities or complications such as scoliosis. Spinal orthoses are used to improve spinal alignment and stability, and slow the progression of spinal deformities.[16] Spinal orthoses can improve alignment, provide support, and enhance comfort, thereby improving quality of life for children with cerebral palsy in these GMFCS categories.[17]

Orthotic Management[edit | edit source]

Lower Limb Transverse Plane and Coronal Plane Deformities[edit | edit source]

The identification of the primary cause of lower limb transverse and coronal plane deformities is imperative to selecting appropriate orthotic interventions.[6] A systematic review by Hudson et al. (2020) highlighted that orthoses can have a positive impact on gait parameters and can improve gross motor function, especially in children with spastic CP.[18] Evidence also suggests that orthotic management, as part of a comprehensive therapeutic intervention, can potentially decrease the progression of these deformities.[19]

Leg Length Discrepancies[edit | edit source]

Leg Length Discrepancies (LLDs) are frequently observed in children diagnosed with hemiplegia, owing to conditions such as Developmental Dysplasia of the Hip (DDH) and the uneven pressure exerted on limbs causing a decrease in bone growth. Resultantly, this can lead to pelvic obliquity and functional constraints like the reduced ability for contralateral hip adduction and ipsilateral hip abduction. An effective strategy to rectify this is the implementation of a shoe raise which can help realign the pelvis and improve functional capacity1.

Management of Torsional Deformities[edit | edit source]

Observations of gait patterns in children exhibiting torsional deformities often reveal an 'in-toeing' or 'scissor' gait. In such cases, a comprehensive evaluation of the lower limb's rotational profile is of paramount importance. This assessment allows the orthotist to distinguish between muscular or bony origins of the torsional deformity. Femoral and tibial rotational deformities along with any fixed muscle contracture are primarily surgical issues and are not usually managed with orthotics2.

Tuning of Ankle Foot Orthosis and Footwear (AFO-FC) Combination[edit | edit source]

Proper tuning of the AFO-FC is critical in maximising its positive impact on gait mechanics, particularly for children with CP. This fine-tuning process involves making detailed adjustments to the orthosis design to optimise its function during walking activities1.

The Role of Ground Reaction Force (GRF)[edit | edit source]

Effective gait requires precise muscular control to properly align the GRF with respect to the ankle, knee, and hip joints during the stance phase. For a child with CP, managing GRF can be challenging due to their compromised neuromuscular condition. That's where AFOs come into play, as they are designed to assist in controlling lower limb movements, thereby positively influencing gait kinetics and kinematics.

A common misconception is that achieving optimal knee extension during the stance phase requires a 90° positioning of the talo-cural joint. However, the key lies in maintaining an appropriate Shank to Vertical Angle (SVA), defined as the angle between the tibial shank and the vertical plane in the sagittal plane2.

In typically developed children and those with CP, the optimum SVA angle during mid-stance ranges between 7° to 15° of inclination, with an ideal target of 10° to 12°. Achieving this SVA permits the vertical progression of the pelvis and trunk, ensuring optimal alignment of the GRF with respect to the ankle, knee, and hip joints.

In the process, the parameters that are commonly adjusted include the heel's height, type and design, and the design and location of the rocker at the metatarsal heads. The design of the AFO and the type and stiffness of the material used for its construction all impact its effect on the child's gait3.

The goal of the tuning process is to ensure the AFO provides the necessary control at the foot and ankle during the stance phase. This helps resist undesirable dorsiflexion, often referred to as 'buckling', and allows for the GRF to be maintained in a desired position with respect to the knee and hip joints.

Moreover, heel height adjustments of as little as 3mm can cause angular changes in the SVA of up to 2°. Hence, minor adjustments can have a significant effect on gait characteristics4.

Although it is recommended that AFO-FC tuning becomes routine in clinical practice, time constraints and access to a gait laboratory for video vector gait analysis often pose challenges. However, the benefits of tuning, which include optimised biomechanical alignment and an enhanced gait, make it a worthwhile part of treatment plans for children with CP.

Benefits of using those orthoses for a child with CP[edit | edit source]

When an orthotic device is a successfully part of treatment, then it should help children establishing normal conditions of joint motion and muscle function as much as possible.

Orthotics can help remedy this situation by one or more of the following effects 

  • Providing a stable base of movement 
  • Improving the gait pattern
  • Reducing the impact of spasticity on upper and lower limbs
  • Creating a better environment in which a child can perform the exercises advised to him/her
  • Reducing excessive energy used to move 
  • Reducing the potential of fall risk 
  • Controlling muscular imbalance 
  • Also, the child will have a stable bases for movement, where they would develop higher level of functioning including  joints ROM, muscle strength, fitness and endurance, balance and control over spastic movement.[20]

References.[edit | edit source]

  1. Gale Encyclopedia of Medicine. Copyright 2008 The Gale Group, Inc.
  2. Report of a Consensus Conference on Lower Limb orthotic Management in Cerebral Palsy. International Society for Prosthetics and orthotics. 1994. https://www.ispoint.org/resource/resmgr/4_EXCHANGE/Conference_on_the_Lower_Limb.pdf
  3. Dr A. Elnahhas ORTHOTIC PRESCRIPTION FOR CEREBRAL PALSY Available from: https://www.youtube.com/watch?v=VxRfpd9srRk&app=desktop (last accessed 6.11.2019)
  4. Hachisuka K, Makino K, Wada F, Saeki S, Yashimoto N. Oxygen consumption, oxygen cost and physiological cost index in polio survivors: A comparison of walking without orthosis, with an ordinary or a carbon-fibre reinforced plastic knee-ankle-foot orthosis. J Rehabil Med 2007; 39: 646–650
  5. nhsggs NHSGGC - Orthotics Patient Information: Orthosis care and repair Available from: https://www.youtube.com/watch?v=GA_tnK-Oe-g (last accessed 6.11.2019)
  6. 6.0 6.1 Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. European journal of neurology. 2001 Nov;8:98-108.
  7. 7.0 7.1 Morris C. A review of the efficacy of lower-limb orthoses used for cerebral palsy. Developmental medicine and child neurology. 2002 Mar;44(3):205-11.
  8. 8.0 8.1 Rethlefsen S, Kay R, Dennis S, Forstein M, Tolo V. The effects of fixed and articulated ankle-foot orthoses on gait patterns in subjects with cerebral palsy. Journal of Pediatric Orthopaedics. 1999 Jul 1;19(4):470-4.
  9. 9.0 9.1 Buckon CE, Thomas SS, Jakobson-Huston S, Moor M, Sussman M, Aiona M. Comparison of three ankle–foot orthosis configurations for children with spastic diplegia. Developmental medicine and child neurology. 2004 Sep;46(9):590-8.
  10. Lam WK, Leong JC, Li YH, Hu Y, Lu WW. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait & posture. 2005 Nov 1;22(3):189-97.
  11. Brehm MA, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. Journal of rehabilitation medicine. 2008 Jul 1;40(7):529-34.
  12. Radtka SA, Skinner SR, Dixon DM, Johanson ME. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Physical therapy. 1997 Apr 1;77(4):395-409.
  13. Rose GE, Lightbody KA, Ferguson RG, Walsh JC, Robb JE. Natural history of flexed knee gait in diplegic cerebral palsy evaluated by gait analysis in children who have not had surgery. Gait & posture. 2010 Mar 1;31(3):351-4.
  14. Kerkum YL, Buizer AI, Van Den Noort JC, Becher JG, Harlaar J, Brehm MA. The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PloS one. 2015 Nov 23;10(11):e0142878.
  15. Rodda JM, Graham HK, Carson L, Galea MP, Wolfe R. Sagittal gait patterns in spastic diplegia. The Journal of bone and joint surgery. British volume. 2004 Mar;86(2):251-8.
  16. Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy.
  17. Miller A, Temple T, Miller F. Impact of orthoses on the rate of scoliosis progression in children with cerebral palsy. Journal of Pediatric Orthopaedics. 1996 May 1;16(3):332-5.
  18. Hudson D, Michalowski H, Miller F. Lower Extremity Orthoses for Children and Youth with Cerebral Palsy. Cerebral Palsy. 2020:2999-3021.
  19. Hägglund G, Lauge-Pedersen H, Wagner P. Characteristics of children with hip displacement in cerebral palsy. BMC musculoskeletal disorders. 2007 Dec;8:1-6.
  20. Orthotic Devices. www.cerebralpalsy.org/information/mobility/orthotics (accessed 11 Dec 2016)