Screw Home Mechanism of The Knee Joint: Difference between revisions

mNo edit summary
No edit summary
Line 2: Line 2:


== Definition ==
== Definition ==
Screw home mechanism (SHM) of knee joint is a critical mechanism that play an important role in terminal extension (last 15 degreas) of the knee <ref>[https://www.ncbi.nlm.nih.gov/pubmed/581081 Goodfellow] J, O'Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br. 1978;60(3):358–369.</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/24619388 Bytyqi] D, Shabani B, Lustig S, Cheze L, Karahoda Gjurgjeala N, Neyret P. Gait knee kinematic alterations in medial osteoarthritis: three dimensional assessment. Int Orthop. 2014;38(6):1191–1198.</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/9345219 Ishii Y, Terajima K, Terashima S, Koga Y. Three-dimensional kinematics of the human knee with intracortical pin fixation. Clin Orthop Relat Res. 1997;(343):144–150.] </ref><ref>https://www.ncbi.nlm.nih.gov/pubmed/12135550</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/11451115 Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar imagematching technique. Clin Orthop Relat Res. 2001;(388):157–166]</ref><ref name=":0">[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553277/# Kim, H. Y., Kim, K. J., Yang, D. S., Jeung, S. W., Choi, H. G., & Choy, W. S. (2015). Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis. ''Clinics in orthopedic surgery'', ''7''(3), 303–309. doi:10.4055/cios.2015.7.3.303]</ref>. Knee joint is a hinge type, uniaxial joint that allows flexion and extension movements. However there is a slight rotation in last 15 degrees of knee extension due to inequality of articular surface of femur condyles.  
Screw home mechanism (SHM) of knee joint is a critical mechanism that play an important role in terminal extension of the knee. 
 
* There is an observable rotation of the knee during flexion and extension. 
SHM is a result of [[Vastus Medialis Oblique|Vastus Medialis Obliquus]] and Vastus Lateralis Obliquus muscle function. The SHM improves the mechanical advantage of knee joint to perform full terminal extension then locks the knee joint<ref>[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1562433/ Bevilaqua-Grossi D1, Monteiro-Pedro V, de Vasconcelos RA, Arakaki JC, Bérzin F. The effect of hip abduction on the EMG activity of vastus medialis obliquus, vastus lateralis longus and vastus lateralis obliquus in healthy subjects. J Neuroeng Rehabil. 2006 3;3:13.]
* During the last 30 degrees of knee extension, the tibia (open chain) or femur (closed chain) must externally or internally rotate, respectively, about 10 degrees.
</ref>. [[Popliteus Muscle|Popliteus muscle]] unlocks the knee.
This rotation is important for healthy movement of the knee.<ref>[https://www.ncbi.nlm.nih.gov/pubmed/581081 Goodfellow] J, O'Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br. 1978;60(3):358–369.</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/24619388 Bytyqi] D, Shabani B, Lustig S, Cheze L, Karahoda Gjurgjeala N, Neyret P. Gait knee kinematic alterations in medial osteoarthritis: three dimensional assessment. Int Orthop. 2014;38(6):1191–1198.</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/9345219 Ishii Y, Terajima K, Terashima S, Koga Y. Three-dimensional kinematics of the human knee with intracortical pin fixation. Clin Orthop Relat Res. 1997;(343):144–150.] </ref><ref>https://www.ncbi.nlm.nih.gov/pubmed/12135550</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/11451115 Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar imagematching technique. Clin Orthop Relat Res. 2001;(388):157–166]</ref><ref name=":0">[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553277/# Kim, H. Y., Kim, K. J., Yang, D. S., Jeung, S. W., Choi, H. G., & Choy, W. S. (2015). Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis. ''Clinics in orthopedic surgery'', ''7''(3), 303–309. doi:10.4055/cios.2015.7.3.303]</ref>.
 
* This slight rotation in the last 15 degrees of knee extension is due to inequality of the articular surface of femur condyles.  
SHM is a normal characteristics of knee<ref>Hallén LG, Lindahl O. The“screw-home”movement in the knee-joint. Acta Orthop Scand, 1966, 37: 97–106.</ref><ref>Moglo KE, Shirazi-Adl A. Cruciate coupling and screw-home mechanism in passive knee joint during extension-flexion. J Biomech, 2005, 38: 1075–1083.</ref><ref>Zhang LK, Wang XM, Niu YZ, Liu HX, Wang F. Relationship between Patellar Tracking and the “Screw-home” Mechanism of Tibiofemoral Joint. Orthop Surg. 2016 Nov;8(4):490-495.</ref>. In most musculoskeletal problems of  knee, theinsufficiency of terminal extension and SHM is a common problem<ref>[https://www.ncbi.nlm.nih.gov/pubmed/24925143 Udagawa K, Niki Y, Enomoto H, Toyama Y, Suda Y. Factors influencing graft impingement on the wall of the intercondylar notch after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(9):2219–2225.]</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/24900891 Lee TQ. Biomechanics of hyperflexion and kneeling before and after total knee arthroplasty. Clin Orthop Surg. 2014;6(2):117–126.]</ref><ref name=":0" />.
* Tibial-on-femoral rotation occurs in an open chain exercise like in the leg extension machine, tibia externally rotates.  
 
* Femoral-on-tibial rotation, as in a closed chain exercise like the squat, femur internally rotates
=== SHM Related Anatomy of Knee Joint ===
* Rotation must occur to achieve full extension and then flexion from full extension.  
Lane Medical Center, Basset Image Collection is a unique non commercial online anatomy image database. The selected dissection photo list is below. In these dissection photos please identfy the sutructures below for better understanding of the SHM.
[[File:Condyles of femur LD.B.0190.004.L.jpg|left|thumb|Condyles of Femur.
Interior of right knee joint, anterior view.
 
Image #190-4
]]
 
[http://lane.stanford.edu/biomed-resources/bassett/bassettView.html?bn=190-4 Interior of right knee joint, anterior view]
 
2 . Lateral condyle of femur  
 
3 . Lateral meniscus
 
5 . Patellar articular surface
 
6 . Quadriceps femoris muscle (reflected)
 
9 . Intercondylar fossa
 
10 . Medial condyle of femur
 
12 . Medial meniscus
 
[http://lane.stanford.edu/biomed-resources/bassett/bassettView.html?bn=190-5 Interior of right knee joint, anterior cruciate ligament]
[[File:Condyles of femur with cruciate ligaments LD.B.0190.005.L.jpg|left|thumb|
Interior of right knee joint, anterior cruciate ligament. Image #190-5
]]
 
1 . Patellar femoral surface
 
2 . Lateral epicondyle
 
3 . Lateral condyle of femur
 
4 . Superior articular surface of tibia
 
5 . Lateral meniscus
 
7 . Patellar articular surface
 
9 . Anterior cruciate ligament
 
10 . Medial condyle of femur
 
11 . Medial meniscus
 
[http://lane.stanford.edu/biomed-resources/bassett/bassettView.html?bn=188-7 Dissection of anterior and medial aspects of thigh]
[[File:Quadriceps femoris anterior view LD.B.0188.007.L.jpg|left|thumb|
Quadriceps femoris muscle.
 
Image #188-7
]]
 
4 . Vastus lateralis muscle (retracted laterally)
 
5 . Rectus lemons muscle (tendon of insertion)
 
6 . Patella
 
7 . Patellar ligament
 
8 . Rectus femoris muscle (tendon of origin)
 
12 . Vastus intermedius muscle
 
13 . Vastus medialis muscle


Also you can check [[Knee|anatomy of knee]] section in Physiopedia.
Also you can check [[Knee|anatomy of knee]] section in Physiopedia.

Revision as of 06:55, 12 September 2020

Definition[edit | edit source]

Screw home mechanism (SHM) of knee joint is a critical mechanism that play an important role in terminal extension of the knee.

  • There is an observable rotation of the knee during flexion and extension.
  • During the last 30 degrees of knee extension, the tibia (open chain) or femur (closed chain) must externally or internally rotate, respectively, about 10 degrees.

This rotation is important for healthy movement of the knee.[1][2][3][4][5][6].

  • This slight rotation in the last 15 degrees of knee extension is due to inequality of the articular surface of femur condyles.
  • Tibial-on-femoral rotation occurs in an open chain exercise like in the leg extension machine, tibia externally rotates.
  • Femoral-on-tibial rotation, as in a closed chain exercise like the squat, femur internally rotates
  • Rotation must occur to achieve full extension and then flexion from full extension.

Also you can check anatomy of knee section in Physiopedia.

Physiological/Mechanical Movement Patern[edit | edit source]

Mechanical Paradox: Articular surface of medial condyle of femur is greater than the articular surface of later condyle.

Articular surface paradox of femur

Physiological Movement: Both medial and lateral condyle moves on articular surface of tibia (medial/lateral meniscus)

Kinetic Chain: Open kinetic chain (foot and calf freely moves)

Movement: Terminal extension of the knee

Screw Home Movement: During extension when all articular surface of lateral condyle is used by roll movement there are still unused articular surface on medial condyle. Femur glides posteriorly on tibia to use full articular surface of medial condyle. Then knee is locked by vastus medialis obliquus.

Clinical Manifestations of Screw Home Mechanism[edit | edit source]

Patellofemoral Pain Sydrome

Osteoartritis of the Knee

Terminal Knee Extention Exercise[edit | edit source]

Terminal knee extention is a specific exercise for vastus medialis obliquus muscle. In earlier descriptions of the exercise it is sugested to improve muscle force of vastus medialis obliquus. Further descriptions also focused on motor leraning and vastus medialis obliquus time delay during terminal extention.

VMO terminal extension exercise. FromRehab My Patient

Clinical Relevelance[edit | edit source]

In most of the knee problems generally there is an insufficiency on terminal extension and vastus medialis obliquus function. Restoration of terminal extension is an important goal of rehabilitation program. Terminal extension exercises like interventions have important contribution on restoration of screw home movement /terminal extension.

References[edit | edit source]