Introduction to Gunshot Injury Rehabilitation

This article or area is currently under construction and may only be partially complete. Please come back soon to see the finished work! (16/04/2024)

Original Editor - User Name

Top Contributors - Ewa Jaraczewska and Jess Bell  

Introduction[edit | edit source]

Definition of the Gunshot Injury[edit | edit source]

Gunshot injury is "the penetrating injury and its related consequences caused by a projectile from a firearm."[1]

Epidemiology[edit | edit source]

Epidemiology of the gunshot injuries is difficult to assess and it varies based on the population, conflict setting, country, characteristics of the conflict, and time it occurred. [1]

  • In the USA in 2020 there were over 45 thousands deaths attributable to gun-related injuries[2], and every one person out of five individuals is going to present with a gunshot injury. [1]
  • 50.5% of deaths in Guatemala, Brazil, Colombia, Venezuela, Mexico and the USA is caused by firearm offences.[2]
  • Civilians and local combatants in armed conflict countries are affected by:[3]
    • 22% gunshot wounds
    • 42.2% of injuries occurred in urban and 26.7% of injuries in semi-urban settings
    • 7.5% of injuries occurred in rural settings
  • Gunshot wounds are the second most common mechanism of injury among US military personnel during armed conflict.[3]

Firearms and Gunshot Injuries[edit | edit source]

Factors responsible for the wounding potential of a firearm include the following:

  • The type of the firearm (muzzle velocity)
  • The type of bullet
    • The larger the bullet, the slower its speed
  • The distance to the target
  • The size of pellets

Based on the muzzle velocity, the firearms can be divided into the low-velocity, medium-velocity , or high velocity firearms.[1]

Low-Velocity Firearms[edit | edit source]

  • Muzzle velocity less than 1200 feet [1]
  • Include small handguns and pistols [1]
  • Cause Gustilo-Anderson type I and type II injuries[4]
    • Type I
      • Low energy
      • Wound size less than one centimetre
      • Minimal soft tissue damage and fracture comminution
      • Wound is clean
      • No neuromuscular injury
    • Type II
      • Moderate energy
      • Wound size between 1 and 10 centimetre
      • Moderate soft tissue damage and fracture comminution
      • Moderate wound contamination
      • No neuromuscular injury

Firearm example: shotgun is technically defined as low velocity, yet this device inflicts devastating wounds when fired at close range due to high-energy transfer.[5]

Medium-Velocity Firearms[edit | edit source]

  • Muzzle velocity between 1200-2000 feet per second [1]
  • High-calibre handguns and also shotguns [1]
  • Wound severity depends on the type of firearms used [1]
  • Shotgun causes more severe wound, regardless of the distance due to hundreds of small fragments inside the body.[6]

Firearm example: shotguns and magnum handguns.[7]

High-Velocity Firearms[edit | edit source]

  • Muzzle velocity greater than 2000 feet per second [1]
  • Associated with more substantial tissue damage[6]
  • Cause Gustilo-Anderson type III wounds[4]
    • Type III (A,B, or C)
      • High energy
      • Wound size usually greater than 10 centimetre
      • Extensive soft tissue damage
      • Severe fracture comminution
      • Extensive wound contamination
      • Periosteal stripping present
      • May require flap coverage (IIIB and IIIC)
      • Exposed fracture with arterial damage that requires repair may be present (IIIC)

Firearm example: rifles.

Mechanism of Gunshot Injury[edit | edit source]

  1. The projectile hits the body
    • Transfers its kinetic energy and heat to the tissues on its way.[1]
    • Creates a permanent cavity approximately at the size of the projectile's cross-sectional area.[1]
    • Creates vortex effect: the spiral-shaped pattern of "dark residue surrounding a central bullet defect" also known as a comet-tailing.[8]
    • Vortex effect causes stretching of the tissue based on the projectile's size creating a temporary cavity. This cavity occurs momentarily and contracts back. [1]
  2. The projectile exits the body by creating a bigger exit point or remains in the body.[1]
  3. The projectile can change direction and create further damage.[1]

Physical Impairments and Complications[edit | edit source]

Gunshot wounds can result in a spectrum of injuries that include the following:[5]

  • Diffuse soft-tissue damage
  • Volumetric muscle loss
  • Hemorrhage
  • Fracture
  • Severe pain

Diffuse soft-tissue damage[edit | edit source]

Soft tissue damage is the result of the primary cavity or temporary cavitation.[5] Tissues in the primary cavity are directly injured by the contact of the projectile and extreme kinetic energy transfer. [1] Tissue in the temporary cavity "is destroyed by projectile compression and shearing that leaves a projectile trail."[5]

The type of tissue damage include partial or complete damage like ruptures, lacerations, internal burns and scarring in the later stages.[1] The following factors will determine the extend of the wound depth and damaged area:

  • Projectile impact: velocity, mass, shape, calibre, material, yawing and impact distance: [5][1]
    • Mass/shape: as the projectile diameter or length becomes bigger they are likely to cause more damage
    • Velocity: as the velocity increases, the amount of kinetic energy dramatically increases, causing more harm.
    • Impact distance: as the projectiles have longer distances, they lose more of its kinetic energy, can create lesser harm, where even smaller projectiles from close distances can cause excessive damage.
    • Yawning: as the distance increases, the projectile loses its stability and starts to yaw off. It can also increase the cross-sectional area and create more damage.
  • Tissue impact: density, elasticity, and thickness
  • The entry and exit points and trajectory within the body [1]
    • If close to the nervous plexus, it can create more severe damage

Volumetric Muscle Loss[edit | edit source]

"Skeletal muscle is suggested to be more sensitive to permanent cavitation, with temporary cavitation thought to induce less damage (unless the vasculature is disrupted) due to skeletal muscle’s inherent elasticity."[5]


In regards to skeletal muscle impacted by a projectile or blast injury, damage is inflicted via various routes with laceration, contusion/crush injury, denervation (i.e., neural deficits), haemorrhage/ischaemia (i.e., vascular impediments) burns, and VML in particular of concern (Fig. ​(Fig.1).1). Both primary firearm or blast wounds can be aggravated by secondary trauma that further complicates severity of the injury, including development of infection/sepsis (caused in some cases by contamination with bullet/shotgun wadding, or other debris collected from clothing or skin), surgical debridement of damaged tissue (optimally performed within 6–8 h of trauma), and/or excessive physical movement. [5]

Immobilisation, systemic inflammation, hyperglycaemia/insulin resistance, and nutrient deficiency are common side effects induced by ballistic trauma7, which are well-established mediators of muscle wasting in both the acute and chronic setting

Resources[edit | edit source]

  • bulleted list
  • x

or

  1. numbered list
  2. x

References[edit | edit source]

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Altunbezel Z. Introduction to Gunshot Injury Rehabilitation. Plus course 2024
  2. 2.0 2.1 Stewart S, Tunstall C, Stevenson T. Gunshot wounds in civilian practice: a review of epidemiology, pathophysiology and management. Orthopaedics and Trauma 2023; 37(4):216-221.
  3. 3.0 3.1 Wild H, Stewart BT, LeBoa C, Stave CD, Wren SM. Epidemiology of Injuries Sustained by Civilians and Local Combatants in Contemporary Armed Conflict: An Appeal for a Shared Trauma Registry Among Humanitarian Actors. World J Surg. 2020 Jun;44(6):1863-1873.
  4. 4.0 4.1 Gustilo Classification. Available from https://www.orthobullets.com/trauma/1003/gustilo-classification [last access 14.04.2024]
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med. 2021 Mar 26;6(1):17.
  6. 6.0 6.1 Baum GR, Baum JT, Hayward D, MacKay BJ. Gunshot Wounds: Ballistics, Pathology, and Treatment Recommendations, with a Focus on Retained Bullets. Orthop Res Rev. 2022 Sep 5;14:293-317.
  7. Gugala Z, Lindsey RW. Classification of Gunshot Injuries in Civilians. Clinical Orthopaedics and Related Research 2003;408():p 65-81.
  8. Prahlow SP, Brown TT, Dye D, Poulos C, Prahlow JA. "Comet-tailing" associated with gunshot entrance wounds. J Forensic Sci. 2021 May;66(3):1154-1160.