Implementing an Early Mobility Programme for Critically Ill Patients

Introduction[edit | edit source]

As discussed here, early mobility (EM) programmes for patients in intensive care units (ICU) are safe and achievable and have been found to improve outcomes in critically unwell patients. It is key that the patients are carefully assessed in order to ensure safety. This page explores the logistics of implementing EM for patients in ICU, particularly in terms of identifying and addressing barriers to commencing EM programmes.

Impact of Immobility and Delayed Mobility[edit | edit source]

Understanding the negative multi-systemic impact of immobility reinforces the benefits of implementing EM programmes, both for clinicians and patients.[1][2][3] In general, bed rest causes increased morbidity and mortality, decreased functional capacity, increased care costs and reduced quality of life.[4]

Cardiovascular system[edit | edit source]

Inactivity and prolonged bed rest lead to cardiac deconditioning, which affects both the central and peripheral cardiovascular systems.[5] Water loss and cardiac deconditioning can occur as fluids are redistributed when a patient is in a supine position. Prolonged bed rest causes a reduction in blood volume and decreases blood return - this causes a gradual decrease in diastolic volume and stroke volume drops.[6] Stroke volume has been found to decrease by 30% after one month of bed rest.[5] This causes an increase in heart rate in order to try to maintain cardiac output.[6] As stroke volume drops, the workload of the myocardium decreases, so it begins to atrophy.[6] Orthostatic intolerance begins to develop within three days of inactivity.[5] There is also increased blood stasis, which increases the risk of deep vein thrombosis and associated conditions like embolus.[4][5][6]

Respiratory System[edit | edit source]

Bed rest results in atelectasis and increases the risk of complications such as pneumonia.[5] Bed rest often also results in delayed weaning from ventilators and decreased respiratory muscle strength.[4] There may be increased airway resistance, decreased mucus clearance with increased mucus pooling, altered ventilation/perfusion ratio and decreased minute ventilation.[4][6]

Other Complications[edit | edit source]

Bed rest also causes pressure ulcers, insulin resistance, and can lead to delirium and other impairments related to cognitive processing and sleep patterns change.[5] There are also issues associated with pain, due to conditions such as musculoskeletal dysfunction and compression neuropathy.[4]

Intensive Care Unit-Acquired Weakness[edit | edit source]

Most of the changes discussed above, improve once mobilisation is commenced and sedation is reduced.[5] Bed rest does, however, result in long term changes in skeletal muscle strength, which is referred to as Intensive Care Unit-Acquired Weakness (ICU-AW).[5] In healthy individuals, immobility is said to cause muscle strength to decrease by 1.3% to 3% per day.[2] Strength decreases by as much as 20 percent after one week of bed rest. Each subsequent week of bed rest causes a further 20 percent decrease in the remaining strength (PERME). ICU-AW has been linked to prolonged hospitalisation, delayed weaning and increased mortality (PARRY). The aetiology of ICU-AW is complex, but risk factors for this condition include: PARRY

  • Sepsis
  • Organ failure involving two or more organs and severity of illness
  • Length of time of mechanical ventilation
  • Length of ICU stay
  • Being female
  • Hyperglycemia
  • Immobility

It is believed that the combination of immobility and local / systemic inflammation promote muscle loss in critically ill patients (PARRY). Other musculoskeletal deconditioning that occurs with bed rest are: WEB

  • Diaphragmatic thinning, which impact the respiratory status
  • Loss of bone mineral density
  • Contractures / stiffness
  1. Perme C, Chandrashekar R. Early mobility and walking program for patients in intensive care units: creating a standard of care. Am J Crit Care. 2009;18(3):212-221.
  2. 2.0 2.1 Morris PE, Griffin L, Berry M, et al. Receiving early mobility during an intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. Am J Med Sci. 2011;341(5):373-377.
  3. Denehy L, Lanphere J, Needham DM. Ten reasons why ICU patients should be mobilized early. Intensive Care Med. 2017;43(1):86-90. 
  4. 4.0 4.1 4.2 4.3 4.4 Okeke C. Implementing and Early Mobility Programme for Critically Ill Patients Course. Physioplus. 2020.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem Physiol Med. 2015;4:16.
  6. 6.0 6.1 6.2 6.3 6.4 Knight J, Nigam Y, Jones A. Effects of bedrest 1: cardiovascular, respiratory and haematological systems. Nurs Times. 2009;105(21):16-20.