Impact of COVID 19 on the Nervous System

This article or area is currently under construction and may only be partially complete. Please come back soon to see the finished work! (18/12/2020)

Original Editor - User Name
Top Contributors - Srishti Banerjee, Kim Jackson, Aminat Abolade and Rishika Babburu

Introduction[edit | edit source]

With the outbreak of coronavirus, the major areas of concern were the respiratory system. However, it has been established that coronavirus affection can extend beyond the respiratory system and one of the deadly areas of affection is the effect of the virus on the nervous system. A wide range of neurological manifestations have been reported during and post covid conditions.

Pathophysiology[edit | edit source]

Invasion via the olfactory route.[edit | edit source]

Loss of smell has been reported as one of the earliest symptoms of covid infection. It has been established by the evidence of an increase in MRI signal to the olfactory cortex suggestive of infection in the nervous system. The virus gains access to the central nervous system via the bloodstream, infecting the endothelial cells. Secondly the virus can enter the peripheral nervous system through retrograde neuronal routes[1]. The virus could be internalized in nerve terminals by endocytosis, transported retrogradely, and spread trans-synaptically to other brain regions[2]

Angiotensin-converting enzyme -2 ( ACE-2) receptor present in the nasal mucosa is exploited by the virus. ACE-2 receptor is also present in organs such as kidneys , lungs, and in tissues of the nervous system. The presence of ACE-2 receptors in the tissues of the nervous system is hypothesized to be the reason that the virus leads to neurological manifestations.

The virus from the general circulation can pass into the cerebral circulation, where due to sluggish movement of the blood in the microcirculation along with the high rate of the load from the initial sites of infection facilitates the interaction of a protein present in the coronavirus known as spike protein ( S protein ) with the ACE-2 receptors present in the capillary endothelium. Following this, there is the budding of the virus in the capillary endothelium leading to the spread of the virus in areas of the brain and brainstem via Virchow-Robin spaces surrounding arterioles and venules[3].

add text here relating to the clinical presentation of the condition


References[edit | edit source]

  1. Auwal Abdullahi , Sevim Acaroz Candan, Muhammad Aliyu Abba, Auwal Hassan Bello, Mansour Abdullah Alshehri , Egwuonwu Afamefuna Victor , et al. Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis, Frontiers in Neurology June 2020 , Volume 11 , Article 6
  2. Iadecola, C., Anrather, J., Kamel, H., Effects of COVID-19 on the nervoussystem, Cell (2020),
  3. ArianMadani Neishaboori , DonyaMoshrefiaraghi , KosarMohamed Ali , Amirmohammad Toloui , Mahmoud Yousefifard ,Mostafa Hosseini. Central Nervous System Complications in COVID-19 Patients; a Systematic Review and Meta-Analysis based on Current Evidence Archives of Academic EmergencyMedicine. 2020; 8(1): e62