Musculoskeletal Injury Prevention: Difference between revisions

(adding content on movement skill - still to be edited and referenced correctly)
(added content on multimodal programmes- still to be edited and referenced correctly)
Line 114: Line 114:


== Sub Heading 3 ==
== Sub Heading 3 ==
Multi-modal Interventions
There are multi-modal interventions that aim to incorporate the modifiable predispositions such as strength, range of movement, proprioception and movement skill. These programmes are usually introduced as part of an extended warm-up programme. There is evidence that these types of injury prevention programmes are successful in reducing injury risk. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R. Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. Bmj. 2005 Feb 24;330(7489):449. Silvers-Granelli HJ, Bizzini M, Arundale A, Mandelbaum BR, Snyder-Mackler L. Does the FIFA 11+ injury prevention program reduce the incidence of ACL injury in male soccer players?. Clinical Orthopaedics and Related Research®. 2017 Oct;475(10):2447-55. More research is needed to gain a further understanding of the adherence to and the maintenance of these programmes. It is clear, though, that compliance is key to a successful reduction in injury. Sugimoto D, Myer GD, Micheli LJ, Hewett TE. ABCs of evidence-based anterior cruciate ligament injury prevention strategies in female athletes. Current physical medicine and rehabilitation reports. 2015 Mar;3(1):43-9. It is also recommended to implement these multi-modal intervention programmes throughout the season and not just for a short period of time i.e only during pre-season. Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. The American journal of sports medicine. 2019 Jun;47(7):1744-53.
Read more about Injury Prevention programmes in sport here: Injury Prevention in Sport <nowiki>https://www.physio-pedia.com/Injury_Prevention_in_Sport?utm_source=physiopedia&utm_medium=search&utm_campaign=ongoing_internal</nowiki>
Examples of Interventions
The KNEE Program - Netball Australia <nowiki>https://knee.netball.com.au/</nowiki>
Sportsmetrics : Warm-up for Injury Prevention and Performance <nowiki>https://sportsmetrics.org/training/wipp/</nowiki>
<nowiki>https://sportsmetrics.org/wp-content/uploads/2020/06/WIPP-Poster.pdf</nowiki>
FIFA 11+ <nowiki>https://www.yrsa.ca/fifa-11.html#:~:text=What%20is%20FIFA%2011%2B%3F,%E2%80%93%2050%25%20less%20injured%20players</nowiki>.
FIFA 11+ Poster <nowiki>https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/english.pdf</nowiki>
FIFA 11+ Manual <nowiki>https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/11plus_workbook_e.pdf</nowiki>
FIFA 11+ Cards <nowiki>https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/11pluscards_e.pdf</nowiki>
World Rugby: Activate Injury Prevention Exercise Programme <nowiki>https://passport.world.rugby/injury-prevention-and-risk-management/activate-injury-prevention-exercise-programme/</nowiki>
Can a 15 minute warm-up programme prevent ACL injury? Study results  <nowiki>https://blogs.bmj.com/bjsm/2014/09/19/can-a-15-mintue-warm-up-programme-prevent-acl-injury-study-results/</nowiki>
Jump Higher and Prevent Injury <nowiki>https://blogs.bmj.com/bjsm/files/2014/09/Jump-Leaflet-women.jpg</nowiki>
Copenhagen Adductor Strengthening Programme Harøy J, Clarsen B, Wiger EG, Øyen MG, Serner A, Thorborg K, Hölmich P, Andersen TE, Bahr R. The adductor strengthening programme prevents groin problems among male football players: a cluster-randomised controlled trial. British journal of sports medicine. 2019 Feb 1;53(3):150-7.
Aspetar Hamstring Protocol <nowiki>https://www.aspetar.com/aspetarfileupload/UploadCenter/636209313253275549_aspetar%20Hamstring%20Protocol.pdf</nowiki>
Implementing Injury Prevention
Ways to successfully implement an injury prevention Padua DA, Frank B, Donaldson A, de la Motte S, Cameron KL, Beutler AI, DiStefano LJ, Marshall SW. Seven Steps for Developing and Implementing a Preventive Training Program: Lessons Learned from JUMP ACL and Beyond. Clinics in sports medicine. 2014 Oct;33(4):615. <nowiki>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185282/</nowiki>
<nowiki>https://www.aspetar.com/journal/viewarticle.aspx?id=406#.YTXF2o4zaUk</nowiki>
Secure buy-in from all key decision makers
Develop an interdisciplinary team
Identify barriers and solutions
Design a context-specific programme
Coach the coaches
Enhance fidelity
Develop an exit strategy
Key steps for Musculoskeletal Injury Prevention Programmes or Prehabilitation
Identify the need for intervention
Identify potential modifiable physical qualities
Assess if these physical qualities are an issue
Engage athletes and coaches in programme Sugimoto D, Myer GD, Foss KD, Hewett TE. Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: meta-analysis and subgroup analysis. British journal of sports medicine. 2015 Mar 1;49(5):282-9.
Minimise time and maximise impact Dargo L, Robinson KJ, Games KE. Prevention of knee and anterior cruciate ligament injuries through the use of neuromuscular and proprioceptive training: an evidence-based review. Journal of athletic training. 2017 Dec;52(12):1171-2.
Make it progressive and sustained Sugimoto D, Myer GD, Foss KD, Hewett TE. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta-and sub-group analyses. Sports Medicine. 2014 Apr;44(4):551-62.
Consider implanting Meso Cycles and Micro dosing
Perodisation of training works on the principles of overload and adaptation. There are three types of periodisation cycles:
Macrocycle = whole season
Mesocycle = specific training block within the season designed to accomplish a particular goal such as endurance, strength, stability or movement skill, usually between 4 – 6 weeks in length
Microcycle = smallest unit within the mesocycle – usually a week of training
Microdosing = involves performing high intensity, low volumes of training but with a higher frequency Read PJ, Oliver JL, Lloyd RS. Seven Pillars of Prevention: Effective Strategies for Strength and Conditioning Coaches to Reduce Injury Risk and Improve Performance in Young Athletes. Strength & Conditioning Journal. 2020 Dec 1;42(6):120-8.


== Resources  ==
== Resources  ==

Revision as of 10:19, 6 September 2021

This article or area is currently under construction and may only be partially complete. Please come back soon to see the finished work! (6/09/2021)

Introduction[edit | edit source]

Introduction


Modifiable risk factors

Proprioception

Strength

Range of Movement

Movement Skill

Evidence for Proprioception (stability training) to prevent injuries

There is an association between poor static balance and ankle and knee ligament injuries, and it has been shown that static balance training reduces the incidence of ankle and knee injuries.

Trojian and McKeag found an association between preseason performance on a single-leg balance test and ankle sprains throughout the season. Trojian TH, McKeag DB. Single leg balance test to identify risk of ankle sprains. British journal of sports medicine. 2006 Jul 1;40(7):610-3.

Oshima et al showed that poor static balance is a novel risk factor for ACL injuries and that proprioceptive training may be effective and clinically relevant in ACL prevention. (Oshima T, Nakase J, Kitaoka K, Shima Y, Numata H, Takata Y, Tsuchiya H. Poor static balance is a risk factor for non-contact anterior cruciate ligament injury. Archives of Orthopaedic and Trauma Surgery. 2018;138:1713-8.) http://carrickinstitutenotes.s3.amazonaws.com/2019-2020+TBI+Series/TBI+5/Articles+sent+second/Poor+static+balance+is+a+risk+factor+for+non-contact+anterior+cruciate+ligament+injury.pdf

Rivera et al concluded that proprioceptive training programmes were effective in reducing the incidence of ankle sprains in an athletic population, including those with and those without a history of ankle sprains. Rivera MJ, Winkelmann ZK, Powden CJ, Games KE. Proprioceptive training for the prevention of ankle sprains: an evidence-based review. Journal of athletic training. 2017 Nov;52(11):1065-7.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737043/

An association between poor dynamic balance and injury exists. A test used to assess dynamic balance is the Star Excursion Balance Test (SEBT). Available evidence:

Provide link to Star Excursion Balance Test_PP page

Anterior reach on SEBT

Low performance on the SEBT -ANT may increase the risk of an ankle ligament injury (Gribble PA, Terada M, Beard MQ, Kosik KB, Lepley AS, McCann RS, Pietrosimone BG, Thomas AC. Prediction of lateral ankle sprains in football players based on clinical tests and body mass index. The American journal of sports medicine. 2016 Feb;44(2):460-7.)

Stiffler et al reported that assessing side to side reach asymmetry in the anterior direction of the SEBY may identify predisposed individuals at risk of sustaining non-contact injuries to the knee and ankle. Stiffler MR, Bell DR, Sanfilippo JL, Hetzel SJ, Pickett KA, Heiderscheit BC. Star excursion balance test anterior asymmetry is associated with injury status in division I collegiate athletes. journal of orthopaedic & sports physical therapy. 2017 May;47(5):339-46.

Ko et al investigated dynamic balance as a risk factor for ankle injures in adolescent soccer players and found an fourfold increased odds for ankle injuries in indivduals with lower SEBT – ANT scores (<64%) Ko J, Rosen AB, Brown CN. Functional performance tests identify lateral ankle sprain risk: a prospective pilot study in adolescent soccer players. Scandinavian journal of medicine & science in sports. 2018 Dec;28(12):2611-6.

Bliekendaal et al reported that lower scores on the normalised SEBT -ANT, as a measure of dynamic balance, are associated wit an increased odds for subsequent ankle injury. However, in this study this was only significant in male participants and not females. Bliekendaal S, Stubbe J, Verhagen E. Dynamic balance and ankle injury odds: a prospective study in 196 Dutch physical education teacher education students. BMJ open. 2019 Dec 1;9(12):e032155.

Postero-medial reach in SEBT

Attenborough et al investigated risk factors for ankle sprains in netball players and found that a lower posterior-medial reach distance is associated with ankle sprains. (a reach of less or equal to 77.5% of leg length) Attenborough AS, Sinclair PJ, Sharp T, Greene A, Stuelcken M, Smith RM, Hiller CE. The identification of risk factors for ankle sprains sustained during netball participation. Physical Therapy in Sport. 2017 Jan 1;23:31-6.

Ruffe et al reported that runners with an Postero-medial reach difference of > 4cm had an increased likelihood of hip/thigh/knee running-related injuries. Ruffe NJ, Sorce SR, Rosenthal MD, Rauh MJ. Lower quarter-and upper quarter Y balance tests as predictors of running-related injuries in high school cross-country runners. International journal of sports physical therapy. 2019 Sep;14(5):695.

Postero-lateral reach in SEBT

A weak performance on the postero-lateral reach of the SEBT is a predisposing factor for ankle ligament injuries in an active population. De Noronha M, França LC, Haupenthal A, Nunes GS. Intrinsic predictive factors for ankle sprain in active university students: a prospective study. Scandinavian journal of medicine & science in sports. 2013 Oct;23(5):541-7.

Johanson et al determined that lower scores on the SEBT – PL increases the risk of FAI injuries. Johansson AC, Karlsson H. The star excursion balance test: Criterion and divergent validity on patients with femoral acetabular impingement. Manual therapy. 2016 Dec 1;26:104-9.

Improving static and dynamic balance could mitigate the risk of ankle and knee injuries.

Range of Movement

Poor hamstring flexibility does not relate to hamstring injury risk. Green et al reported no factor related to flexibility, mobility and range of motion showed a clear relationship with the risk of hamstring injury. Common tests investigated included – passive knee extension, active knee extension, passive straight leg raise and slump.  Green B, Bourne MN, van Dyk N, Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. British Journal of Sports Medicine. 2020 Sep 1;54(18):1081-8.

Limited hip abduction range of movement does not increase the risk of a groin muscle injury. Whittaker et al did a systematic review on risk factors for groin injury in sport and highlighted that there is limited evidence of an association between hip range of motion and groin injury. Whittaker JL, Small C, Maffey L, Emery CA. Risk factors for groin injury in sport: an updated systematic review. British journal of sports medicine. 2015 Jun 1;49(12):803-9. Another systematic review did find reduced hip abductor range of movement is a risk factor for groin/hip injury in field-based sports. However, there was a limited scope of sports considered in this review and both hip and groin injuries were investigated. Ryan J, DeBurca N, Mc Creesh K. Risk factors for groin/hip injuries in field-based sports: a systematic review. British journal of sports medicine. 2014 Jul 1;48(14):1089-96.

Quadriceps flexibility as determined by the modified Thomas test, was reported as an independent risk factor for hamstring injury occurrence in Australian rules football players, players with greater flexibility were 70% less likely to suffer a hamstring injury. Gabbe BJ, Finch CF, Bennell KL, Wajswelner H. Risk factors for hamstring injuries in community level Australian football. British journal of sports medicine. 2005 Feb 1;39(2):106-10.

Limited ankle dorsiflexion range is not a risk factor for calf muscle injuriesGreen B, Pizzari T. Calf muscle strain injuries in sport: a systematic review of risk factors for injury. British journal of sports medicine. 2017 Aug 1;51(16):1189-94.

Ankle dorsiflexion range did not predict stress fractures of the tibia or foot in military recruits. Dixon S, Nunns M, House C, Rice H, Mostazir M, Stiles V, Davey T, Fallowfield J, Allsopp A. Prospective study of biomechanical risk factors for second and third metatarsal stress fractures in military recruits. Journal of science and medicine in sport. 2019 Feb 1;22(2):135-9. And  Nunns M, House C, Rice H, Mostazir M, Davey T, Stiles V, Fallowfield J, Allsopp A, Dixon S. Four biomechanical and anthropometric measures predict tibial stress fracture: a prospective study of 1065 Royal Marines. British journal of sports medicine. 2016 Oct 1;50(19):1206-10.

Dorsiflexion range and knee injury

Fong et al reported that increased dorsiflexion range of motion was associated with greater knee flexion and smaller ground reaction forces during landing, thus a landing posture that is related to reduced ACL risk. Fong CM, Blackburn JT, Norcross MF, McGrath M, Padua DA. Ankle-dorsiflexion range of motion and landing biomechanics. Journal of athletic training. 2011 Jan;46(1):5-10.

There is compelling evidence for an association between reduced/limited ankle dorsiflexion and dynamic knee valgus. It is therefor recommended to include ankle dorsiflexion range of movement assessments in clinical practice as it may be a predisposition to harmful lower limb movement patterns. Lima YL, Ferreira VM, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GP. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Physical Therapy in Sport. 2018 Jan 1;29:61-9.

Improving ankle dorsiflexion range of movement may be beneficial in preventing injuries, but improving hamstring flexibility will not prevent hamstring injuries.

Sub Heading 2[edit | edit source]

Strength

Hip abduction weakness on single-leg balance tasks relates to impaired postural control. Deficits in postural control and balance may lead to an increased risk of ankle sprains.  Gafner SC, Hoevel V, Punt IM, Schmid S, Armand S, Allet L. Hip-abductor fatigue influences sagittal plane ankle kinematics and shank muscle activity during a single-leg forward jump. Journal of Electromyography and Kinesiology. 2018 Dec 1;43:75-81.

Hip abduction strength correlates to knee valgus angle, especially in single leg ballistic tasks. Dix J, Marsh S, Dingenen B, Malliaras P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Physical Therapy in Sport. 2019 May 1;37:197-209, but association to injury is limited and further research is necessary. Cronström A, Creaby MW, Nae J, Ageberg E. Modifiable factors associated with knee abduction during weight-bearing activities: a systematic review and meta-analysis. Sports Medicine. 2016 Nov;46(11):1647-62.

Knee valgus angle and moment on landing tasks are influenced by gluteal muscle strength. The level of influence varies across different tasks such as single leg squatting and landing tasks as well as between genders. Neamatallah Z, Herrington L, Jones R. An investigation into the role of gluteal muscle strength and EMG activity in controlling HIP and knee motion during landing tasks. Physical Therapy in Sport. 2020 May 1;43:230-5.

Reduced isometric hip abductor strength can be a predisposition to non-contact lateral ankle sprains Powers CM, Ghoddosi N, Straub RK, Khayambashi K. Hip strength as a predictor of ankle sprains in male soccer players: a prospective study. Journal of athletic training. 2017 Nov;52(11):1048-55.

Trunk and hip muscle performance and motor control are significant contributors to ACL injury risk Lucas KC, Kline PW, Ireland ML, Noehren B. Hip and trunk muscle dysfunction: implications for anterior cruciate ligament injury prevention. Ann Joint. 2017 May 1;2:18. Khayambashi et al indicated that baseline hip abduction strength <35% of body weight (BW) predisposes athletes to future non-contact ACL injuries

Reduced trunk lateral flexion strength, measured with a side-bridge test, was associated with increased knee abduction angle during a single-leg squat. The side-bridge test incorporates lateral flexion strength of the trunk as well as hip abductor strength, therefore a weakness in this musculature may lead to increased trunk instability and increased knee abduction and together this may predispose an athlete to injury. Cronström A, Creaby MW, Nae J, Ageberg E. Modifiable factors associated with knee abduction during weight-bearing activities: a systematic review and meta-analysis. Sports Medicine. 2016 Nov;46(11):1647-62.

Bilateral squat strength was associated with hip abduction and knee valgus on landing McCurdy K, Walker J, Armstrong R, Langford G. Relationship between selected measures of strength and hip and knee excursion during unilateral and bilateral landings in women. The Journal of Strength & Conditioning Research. 2014 Sep 1;28(9):2429-36.

Weaker levels of lower extremity muscle strength (assessed with the one repetition maximum (1RM) barbell squat) may be an important and modifiable predisposition for sustaining a traumatic knee injury in youth female athletes Augustsson SR, Ageberg E. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. BMJ open sport & exercise medicine. 2017 Apr 1;3(1):e000222.

Injuries are likely to be mitigated by increasing triple extension or squat strength and by improving hip abductor muscle strength

Movement Skill

Female athletes with a combination of increased knee valgus and lateral trunk motion in the direction of the stance limb during the single leg drop vertical jump test may have an increased risk for non-contact knee injuries. Dingenen B, Malfait B, Nijs S, Peers KH, Vereecken S, Verschueren SM, Staes FF. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clinical biomechanics. 2015 Oct 1;30(8):781-fro7.

Increased knee valgus on single leg squat increases lower limb injury risk Eckard T, Padua D, Mauntel T, Frank B, Pietrosimone L, Begalle R, Goto S, Clark M, Kucera K. Association between double-leg squat and single-leg squat performance and injury incidence among incoming NCAA Division I athletes: A prospective cohort study. Physical Therapy in Sport. 2018 Nov 1;34:192-200. Raisanen et al showed that athletes with a high frontal plane knee projection angle (FPKPA) during a single-leg squat were 2.7 times more likely to sustain a lower extremity injury and 2.4 times more likely to sustain an ankle injury. Räisänen AM, Pasanen K, Krosshaug T, Vasankari T, Kannus P, Heinonen A, Kujala UM, Avela J, Perttunen J, Parkkari J. Association between frontal plane knee control and lower extremity injuries: a prospective study on young team sport athletes. BMJ open sport & exercise medicine. 2018 Jan 1;4(1):e000311.

Adolescents girls (13 years) with a knee abduction moment or load of >15 Nm associated with a greater likelihood (6.8%) of developing Patellafemoral pain (PFPS). Girls aged 16 with a landing score of >25Nm have an increased risk for both PFP and ACL injury. Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury?. British journal of sports medicine. 2015 Jan 1;49(2):118-22.

Bramah et al showed that for every 1 degree increase in pelvic drop during running, there was a 80% increase in the odds of being classified as injured Bramah C, Preece SJ, Gill N, Herrington L. Is there a pathological gait associated with common soft tissue running injuries?. The American journal of sports medicine. 2018 Oct;46(12):3023-31.

Improving landing and running mechanics through mainly reducing trunk lean, hip adduction and knee valgus it is likely to mitigate injury risk

Sub Heading 3[edit | edit source]

Multi-modal Interventions

There are multi-modal interventions that aim to incorporate the modifiable predispositions such as strength, range of movement, proprioception and movement skill. These programmes are usually introduced as part of an extended warm-up programme. There is evidence that these types of injury prevention programmes are successful in reducing injury risk. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R. Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. Bmj. 2005 Feb 24;330(7489):449. Silvers-Granelli HJ, Bizzini M, Arundale A, Mandelbaum BR, Snyder-Mackler L. Does the FIFA 11+ injury prevention program reduce the incidence of ACL injury in male soccer players?. Clinical Orthopaedics and Related Research®. 2017 Oct;475(10):2447-55. More research is needed to gain a further understanding of the adherence to and the maintenance of these programmes. It is clear, though, that compliance is key to a successful reduction in injury. Sugimoto D, Myer GD, Micheli LJ, Hewett TE. ABCs of evidence-based anterior cruciate ligament injury prevention strategies in female athletes. Current physical medicine and rehabilitation reports. 2015 Mar;3(1):43-9. It is also recommended to implement these multi-modal intervention programmes throughout the season and not just for a short period of time i.e only during pre-season. Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. The American journal of sports medicine. 2019 Jun;47(7):1744-53.

Read more about Injury Prevention programmes in sport here: Injury Prevention in Sport https://www.physio-pedia.com/Injury_Prevention_in_Sport?utm_source=physiopedia&utm_medium=search&utm_campaign=ongoing_internal

Examples of Interventions

The KNEE Program - Netball Australia https://knee.netball.com.au/

Sportsmetrics : Warm-up for Injury Prevention and Performance https://sportsmetrics.org/training/wipp/

https://sportsmetrics.org/wp-content/uploads/2020/06/WIPP-Poster.pdf

FIFA 11+ https://www.yrsa.ca/fifa-11.html#:~:text=What%20is%20FIFA%2011%2B%3F,%E2%80%93%2050%25%20less%20injured%20players.

FIFA 11+ Poster https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/english.pdf

FIFA 11+ Manual https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/11plus_workbook_e.pdf

FIFA 11+ Cards https://www.yrsa.ca/wp-content/uploads/2019/11/pdf/Fifa11/11pluscards_e.pdf

World Rugby: Activate Injury Prevention Exercise Programme https://passport.world.rugby/injury-prevention-and-risk-management/activate-injury-prevention-exercise-programme/

Can a 15 minute warm-up programme prevent ACL injury? Study results  https://blogs.bmj.com/bjsm/2014/09/19/can-a-15-mintue-warm-up-programme-prevent-acl-injury-study-results/

Jump Higher and Prevent Injury https://blogs.bmj.com/bjsm/files/2014/09/Jump-Leaflet-women.jpg

Copenhagen Adductor Strengthening Programme Harøy J, Clarsen B, Wiger EG, Øyen MG, Serner A, Thorborg K, Hölmich P, Andersen TE, Bahr R. The adductor strengthening programme prevents groin problems among male football players: a cluster-randomised controlled trial. British journal of sports medicine. 2019 Feb 1;53(3):150-7.

Aspetar Hamstring Protocol https://www.aspetar.com/aspetarfileupload/UploadCenter/636209313253275549_aspetar%20Hamstring%20Protocol.pdf

Implementing Injury Prevention

Ways to successfully implement an injury prevention Padua DA, Frank B, Donaldson A, de la Motte S, Cameron KL, Beutler AI, DiStefano LJ, Marshall SW. Seven Steps for Developing and Implementing a Preventive Training Program: Lessons Learned from JUMP ACL and Beyond. Clinics in sports medicine. 2014 Oct;33(4):615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185282/

https://www.aspetar.com/journal/viewarticle.aspx?id=406#.YTXF2o4zaUk


Secure buy-in from all key decision makers

Develop an interdisciplinary team

Identify barriers and solutions

Design a context-specific programme

Coach the coaches

Enhance fidelity

Develop an exit strategy

Key steps for Musculoskeletal Injury Prevention Programmes or Prehabilitation

Identify the need for intervention

Identify potential modifiable physical qualities

Assess if these physical qualities are an issue

Engage athletes and coaches in programme Sugimoto D, Myer GD, Foss KD, Hewett TE. Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: meta-analysis and subgroup analysis. British journal of sports medicine. 2015 Mar 1;49(5):282-9.

Minimise time and maximise impact Dargo L, Robinson KJ, Games KE. Prevention of knee and anterior cruciate ligament injuries through the use of neuromuscular and proprioceptive training: an evidence-based review. Journal of athletic training. 2017 Dec;52(12):1171-2.

Make it progressive and sustained Sugimoto D, Myer GD, Foss KD, Hewett TE. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta-and sub-group analyses. Sports Medicine. 2014 Apr;44(4):551-62.

Consider implanting Meso Cycles and Micro dosing

Perodisation of training works on the principles of overload and adaptation. There are three types of periodisation cycles:

Macrocycle = whole season

Mesocycle = specific training block within the season designed to accomplish a particular goal such as endurance, strength, stability or movement skill, usually between 4 – 6 weeks in length

Microcycle = smallest unit within the mesocycle – usually a week of training

Microdosing = involves performing high intensity, low volumes of training but with a higher frequency Read PJ, Oliver JL, Lloyd RS. Seven Pillars of Prevention: Effective Strategies for Strength and Conditioning Coaches to Reduce Injury Risk and Improve Performance in Young Athletes. Strength & Conditioning Journal. 2020 Dec 1;42(6):120-8.

Resources[edit | edit source]

  • bulleted list
  • x

or

  1. numbered list
  2. x

References[edit | edit source]