Lumbar Motor Control Training

 During the 1990s and 2000s a large number of papers have been published on lumbar motor control training, led by researchers from the University of Queensland. Practitioners across the world now recognise that local (commonly called “core”) muscles such as transversus abdominis, lumbar multifidus and the pelvic floor need assessment and consideration for inclusion in an integrated treatment program. A recent systematic review evaluating the effectiveness of motor control exercise targeting these muscles concluded:

“The pooled results favored motor control exercise (MCE) compared with general exercise with regard to pain in the short and intermediate term and with regard to disability during all time periods. MCE was also superior to spinal manual therapy with regard to disability during all time periods but not with regard to pain. Compared with minimal intervention, MCE was superior with regard to both pain and disability during all time periods.”

Bystrom et al 2013[1] 

PICTURE

Figure 1: Transversus abdominis (from en.wikipedia.org)

PICTURE

Figure 2: Lumbar multifidus on the left of the spine (from en.wikipedia.org)

Justification for lumbar motor control training

Specific motor control training as part of the treatment protocol was based on the principles developed by Richardson and colleagues.[2]Extensive research has been published on the importance of normal motor control in the lumbar spine including but not limited to:
• An anatomical and biomechanical suitability of the core muscles for providing stability to structures in the lumbar spine[3][4][5][6][7][8][9][10][11][12] 
• Feedforward mechanisms in people without a LBD resulting in “pre-setting” of the core muscles in anticipation of postural perturbation[13][14][15]

• Contraction of core muscles independent of direction of trunk forces and movements[16][17] 
• Maladaptive differences between people with and without LBD in terms of altered feedforward mechanisms,[18][19][20][21] reduced core muscle cross sectional size,[22][23] increased global muscle activity in certain subgroups[24] and altered cortical representation of motor patterns[25]

This substantial literature has led to the hypothesis that correcting maladaptive motor control is an important component in the rehabilitation of LBD and prevention of recurrence.[12][2] This hypothesis is strengthened based on clinical data showing a reversal of the maladaptive changes observed in people with LBD[22][26][27][28][28][29] which is not achieved by less specific exercise such as abdominal bracing or general exercise.[30][31] In addition, RCTs have shown significant improvement for pain and activity in participants receiving specific motor control training compared to usual care[32][33][34][35] with larger effects demonstrable when homogenous subgroups are recruited.[36] Recent controversy around specific motor control training[37][38] has been refuted based on an insufficient consideration of this expansive literature as a whole.[36]

There is clear and extensive mechanistic and randomised controlled trial based data supporting the rationale for precise motor control training for LBD.

Clinical application of motor control training

The principles of lumbar motor control training have been well described,[2][39] however a large amount of variability in clinical application exists between physiotherapists.[40] In addition, motor control training is commonly reported as a difficult concept to efficiently teach in people with LBD.[33][41][42] On this basis, a series of clinical decision making algorithms, based on established protocols,[2][39] has been developed and validated in a major clinical trial.[43] This article summarises the literature on lumbar motor control training in terms of mechanisms and clinical approaches to application.

The goal of the motor control program is to retrain the core muscles of the lumbar spine, comprising transversus abdominis, lumbar multifidus and the pelvic floor, to maintain a tonic and automatic contraction[20][44] at less than 30% of maximum voluntary contraction[26][28] in daily activities. In most cases this requires initial training in non-weight bearing positions using a lower abdominal drawing in manoeuvre which has been shown to selectively activate transversus abdominis.[22] Lumbar multifidus and the pelvic floor muscles, including pubococcygeus, have been shown to co-contract with transversus abdominis to provide a “corset” for the lumbo-pelvic area[45][46] and practitioners should aim to achieve such a result in association with the lower abdominal drawing in manoeuvre. Training should initially focus on quality of movement and precise isolation of the relevant core muscles which has been shown to be important in restoring normal motor control in people with LBD.[47][48] Once adequate motor control of the core muscles is achieved in non-weight bearing positions, subsequent progression to functional activities can be made.[49][50] Importantly this progression involves integration of the global muscles of the spine with the core muscles during specific functional exercises as well as during strength training of the trunk.[51] There is emerging evidence that functional retraining of normal lumbo-pelvic kinematics can improve motor control and clinical outcomes[52] and these methods should also be considered during functional motor control exercises.

There is an overlap between assessment and treatment of motor control in the lumbar spine and these processes are summarised in Figure 3 for non-weight bearing positions.

DIAGRAM

  • ASIS=anterior superior iliac spine
    ^MVC=maximal voluntary contraction

Figure 3: Initial non-weight bearing motor control training strategies

Adequate relaxation of the global muscles, such as rectus abdominis, external obliques and erector spinae, is required before attempting to contract the core stability muscles. Patients with maladaptive motor control strategies commonly demonstrate a dominance of the global muscles during functional tasks and at rest.[53][44] In retraining a normal motor control pattern, adequate relaxation is an important first step in inhibiting tone of the global muscles, thereby allowing a more isolated contraction of the core muscles.[54] In attaining a relaxed state, a neutral spine position should also be encouraged, as this appears to improve activation of the core muscles.[55][56]

An instruction to “draw the lower abdomen in towards the spine” should be used consistent with the developers of the abdominal drawing in method.[57] In addition to these standard instructions, the terms “slowly” and “gently” can be added to emphasise the sub-maximal nature of the contraction.[58] Tactile cues to the lower abdomen should be used in conjunction with verbal cues to provide additional emphasis on a lower rather than more general drawing in of the abdomen.[59] Non-weight bearing positions should be selected in the position where best activation of transversus abdominis is observed,[60][61] however side lying is commonly the optimal position for initial retraining[62] due to ease of obtaining relaxation of the global muscles and an improved length tension relationship in transversus abdominis compared to other positions (eg supine or crook lying).

Primary outcomes indicative of an adequate and sub-maximal transversus abdominis contraction are a 2-3cm isolated inward movement of the abdomen approximately 3cm above the pubic symphysis and a palpable slow and co-ordinated change in tone from a “soft” feel in the relaxed state to a “spongy” feel at sub-maximal contraction.[63] These palpatory findings provide the physiotherapist with information additional to observation regarding the sub-maximal nature of the contraction.[64] The physiotherapist can concurrently palpate adjacent to the L3-L5 spinous processes to assess for co-contraction of lumbar multifidus, in the process identifying whether specific multifidus retraining is also required to achieve normal motor control. Well documented substitution strategies[65] should be monitored, and patient feedback provided, to ensure the observed drawing in of the lower abdomen and the palpatory findings are not the result of activity from the global muscles, in particular internal obliques. The following figure shows examples of incorrect and correct abdominal drawing in.


  1. Bystrom MG, Rasmussen-Barr E, Grooten WJ. Motor control exercises reduces pain and disability in chronic and recurrent low back pain: a meta-analysis. Spine (Phila Pa 1976). 2013; 38(6): E350-8
  2. 2.0 2.1 2.2 2.3 Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004 Cite error: Invalid <ref> tag; name "Richardson et al 2004" defined multiple times with different content
  3. Barker P, Briggs, CA, Bogeski, G. Tensile transmission across the lumbar fasciae in embalmed cadavers: effects of tension to various muscular attachments. Spine. 2004; 29: 129-38
  4. Barker P, Guggenheimer, KT, Grkovic, I, Briggs, CA, Jones, DC, Thomas, CD, Hodges, PW. Effects of tensioning the lumbar fascia on segmental stiffness during flexion and extension. Spine. 2006; 31(4): 387-405
  5. Barker P, Briggs C. Attachments of the posterior layer of lumbar fascia. Spine. 1999; 24(17): 1757-64
  6. Panjabi M. The stabilizing system of the spine: Part I: Function, dysfucntion, adaptation and enhancement. Journal of Spinal Disorders. 1992; 5: 383-9
  7. Wilke H, Wolf S, Claes L, Arand M, Wiesend A. Stability increase on the lumbar spine with different muscle groups. Spine. 1995; 20(2): 192-8
  8. MacIntosh J, Bogduk N. The biomechanics of the lumbar multifidus. Clinical biomechanics. 1986; 1: 205-13
  9. Kaigle A, Holm S, Mansson T. Experimental instability in the lumbar spine. Spine. 1995; 20(4): 421-30
  10. Hodges P, Eriksson M, Shirley D, Gandevia S. Intra-abdominal pressure increases stiffness of the lumbar spine. Journal of Biomechanics. 2005; 38(9): 1873-80
  11. Hodges P, Cresswell, AG, Daggfeldt, K, Thorstensson, A. In vivo measurements of the effect of intra-abdominal pressure on the human spine. Journal of Biomechanics. 2001; 34(347-353)
  12. 12.0 12.1 Hodges P, Kaigle, HA, Holm, S, Ekström, L, Cresswell, A, Hansson, T, Thorstensson, A. . Intervertebral stiffness of the spine is increased by evoked contraction of transversus abdominis and the diaphragm: in vivo porcine studies. Spine. 2003; 28(23): 2594-601 Cite error: Invalid <ref> tag; name "Hodges et al 2003" defined multiple times with different content
  13. Cresswell A, Oddsson, L, Thorstensson, A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain res. 1994; 98: 336-41
  14. Hodges P, Richardson C. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997; 114: 362-70
  15. Hodges P, Richardson C. Contraction of the abdominal muscles associated with movement of the lower limb. Physical Therapy. 1997; 77(2): 132-44
  16. Cresswell A, Grundstrom H, Thorstensson A. Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiology Scandinavia. 1992
  17. Hodges P, Cresswell, A &amp;amp; Thorstensson, A. Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res. 1999; 124: 69-79
  18. Hodges P, Richardson C. Inefficient muscular stabilisation of the lumbar spine associated with low back pain: a motor control evaluation of transversus abdominis. Spine. 1996; 21: 2640-50
  19. Hodges P, Richardson, CA. Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. Journal of Spinal Disorders. 1998; 11(1): 46-56
  20. 20.0 20.1 Ferreira P, Ferreira M, Hodges P. Changes in recruitment of the abdominal muscles in people with low back pain: ultrasound measurement of muscle activity. Spine. 2004; 29(22): 2560-6
  21. MacDonald D, Moseley G, Hodges P. Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. 2009; 142(3): 183-8
  22. 22.0 22.1 22.2 Hides J, Lambrecht G, Richardson C, Stanton W, Armbrecht G, Pruett C, et al. The effects of rehabilitation on the muscles of the trunk following prolonged bed rest. European Spine Journal. 2010 Cite error: Invalid <ref> tag; name "Hides et al 2010" defined multiple times with different content Cite error: Invalid <ref> tag; name "Hides et al 2010" defined multiple times with different content
  23. Dickx N, Cagnie B, Parlevliet T, Lavens A, Danneels L. The effect of unilateral muscle pain on recruitment of the lumbar multifidus during automatic contraction. An experimental pain study. Manual Therapy. 2010; 15(4): 364-9
  24. Dankaerts W, O'Sullivan P, Burnett A, Straker L. Altered patterns of superficial trunk muscle activation during sitting in nonspecific chronic low back pain patients: importance of subclassification. Spine. 2006; 31(17): 2017-23
  25. Tsao H, Galea M, Hodges P. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008; 131(8): 2161-71
  26. 26.0 26.1 Tsao H, Hodges P. Immediate changes in feedforward postural adjustments following voluntary motor training. Experimental Brain Research. 2007; 181(4): 537-46
  27. Tsao H, Hodges P. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain. Journal of Electromyography and Kinesiology. 2008; 18(4): 559-67
  28. 28.0 28.1 28.2 Tsao H, Druitt T, Schollum T, Hodges P. Motor training of the lumbar paraspinal muscles induces immediate changes in motor coordination in patients with recurrent low back pain. The Journal of Pain. 2010; 11(11): 1120-8 Cite error: Invalid <ref> tag; name "Tsao et al 2010" defined multiple times with different content Cite error: Invalid <ref> tag; name "Tsao et al 2010" defined multiple times with different content
  29. Vasseljen O, Fladmark A. Abdominal muscle contraction thickness and function after specific and general exercises: a randomized controlled trial in chronic low back pain patients. Man Ther. 2010; 15(5): 482-9
  30. Ferreira P, Ferreira M, Maher C, Refshauge K, Herbert R, Hodges P. Changes in recruitment of transversus abdominis correlate with disability in people with chronic low back pain. British Journal of Sports Medicine. 2009; 44(16): 1166-72
  31. Hall L, Tsao H, MacDonald D, Coppieters M, Hodges P. Immediate effects of co-contraction training on motor control of the trunk muscles in people with recurrent low back pain. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology. 2009; 19(5): 763
  32. Ferreira P, Ferreira M, Maher C, Herbert R, Refshauge K. Specific stabilisation exercise for spinal and pelvic pain: a systematic review. Australian Journal of Physiotherapy. 2006; 52(2): 79-88
  33. 33.0 33.1 Standaert C, Weinstein S, Rumpeltes J. Evidence-informed management of chronic low back pain with lumbar stabilization exercises. The Spine Journal. 2008; 8(1): 114-20
  34. Rackwitz B, de Bie R, Limm H, von Garnier K, Ewert T, Stucki G. Segmental stabilizing exercises and low back pain. What is the evidence? A systematic review of randomized controlled trials. Clin Rehabil. 2006; 20(7): 553-67
  35. Macedo L, Maher C, Latimer J, McAuley J. Motor control exercise for persistent, nonspecific low back pain: a systematic review. Physical Therapy. 2009; 89(1): 9-25
  36. 36.0 36.1 Hodges P. Transversus abdominis: a different view of the elephant. British Journal of Sports Medicine. 2008; 42(12): 941-4
  37. Allison G, Morris S. Transversus abdominis and core stability: has the pendulum swung? British Journal of Sports Medicine. 2008; 42(11): 630-1
  38. McGill SM. Low back disorders: Evidence-based prevention and rehabilitation 2nd ed. Illinois: Human Kinetics Publishers; 2008
  39. 39.0 39.1 O'Sullivan P. Lumbar segmental 'instability': clinical presentation and specific stabilizing exercise management. Manual Therapy. 2000; 5(1): 2-12
  40. Ford J, Hahne A, Chan A, Surkitt L. A classification and treatment protocol for low back disorders. Part 3: functional restoration for intervertebral disc related disorders. Physical Therapy Reviews. 2012; 17(1): 55-75
  41. Henry S, Westervelt K. The use of real-time ultrasound feedback in teaching abdominal hollowing exercises to healthy subjects. Journal of Orthopaedic &amp; Sports Physical Therapy. 2005; 35(6): 338-45
  42. Hides J, Stanton W, Freke M, Wilson S, McMahon S, Richardson C. MRI study of the size, symmetry and function of the trunk muscles among elite cricketers with and without low back pain. Br J Sports Med. 2008; 42(10): 809-13
  43. Hahne AJ, Ford JJ, Surkitt LD, Richards MC, Chan AY, Thompson SL, et al. Specific treatment of problems of the spine (STOPS): design of a randomised controlled trial comparing specific physiotherapy versus advice for people with subacute low back disorders. BMC Musculoskeletal Disorders. 2011; 12: 104
  44. 44.0 44.1 Hides J, Belavy D, Cassar L, Williams M, Wilson S, Richardson C. Altered response of the anterolateral abdominal muscles to simulated weight-bearing in subjects with low back pain. Eur Spine J. 2009; 18(3): 410-8
  45. Sapsford R. Contraction of the pelvic floor muscles during abdominal maneuvers. Archives of Physical Medicine and Rehabilitation. 2001; 82(8): 1081-8
  46. Neumann P, Gill V. Pelvic floor and abdominal muscle interaction: EMG activity and intra- abdominal pressure. Int Urogynecol J Pelvic Floor Dysfunct. 2002; 13: 125-32
  47. Tsao H, Hodges P. Immediate changes in feedforward postural adjustments following voluntary motor training. Experimental Brain Research. 2007; 181(4): 537-46
  48. Tsao H, Druitt T, Schollum T, Hodges P. Motor training of the lumbar paraspinal muscles induces immediate changes in motor coordination in patients with recurrent low back pain. The Journal of Pain. 2010; 11(11): 1120-8
  49. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004
  50. Hides J, Stanton W, Wilson S, Freke M, McMahon S, Sims K. Retraining motor control of abdominal muscles among elite cricketers with low back pain. Scandinavian Journal of Medicine &amp; Science in Sports. 2010; 20(6): 834-42
  51. Standaert C, Weinstein S, Rumpeltes J. Evidence-informed management of chronic low back pain with lumbar stabilization exercises. The Spine Journal. 2008; 8(1): 114-20
  52. Dankaerts W, O'Sullivan P. The validity of O'Sullivan's classification system (CS) for a sub-group of NS-CLBP with motor control impairment (MCI): Overview of a series of studies and review of the literature. Man Ther. 2010
  53. Hodges P, Moseley G. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. Journal of Electromyography and Kinesiology. 2003; 13(4): 361-70
  54. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004
  55. Reeve A, Dilley A. Effects of posture on the thickness of transversus abdominis in pain-free subjects. Manual Therapy. 2009; 14(6): 679-84
  56. O'Sullivan P, Dankaerts W, Burnett A, Farrell G, Jefford E, Naylor C, et al. Effect of different upright sitting postures on spinal-pelvic curvature and trunk muscle activation in a pain-free population. Spine. 2006; 31(19): E707-12
  57. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004
  58. Hides J, Scott Q, Jull G, Richardson C. A clinical palpation test to check the activation of the deep stabilizing muscles of the lumbar spine. International SportMed Journal. 2000; 1(4)
  59. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004
  60. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004
  61. Hides J, Stanton W, Wilson S, Freke M, McMahon S, Sims K. Retraining motor control of abdominal muscles among elite cricketers with low back pain. Scandinavian Journal of Medicine & Science in Sports. 2010; 20(6): 834-42
  62. Hides J, Stanton W, Wilson S, Freke M, McMahon S, Sims K. Retraining motor control of abdominal muscles among elite cricketers with low back pain. Scandinavian Journal of Medicine & Science in Sports. 2010; 20(6): 834-42
  63. Hides J, Scott Q, Jull G, Richardson C. A clinical palpation test to check the activation of the deep stabilizing muscles of the lumbar spine. International SportMed Journal. 2000; 1(4)
  64. Hides J, Scott Q, Jull G, Richardson C. A clinical palpation test to check the activation of the deep stabilizing muscles of the lumbar spine. International SportMed Journal. 2000; 1(4)
  65. Richardson C, Jull G, Hodges P. Therapeutic exercise for lumbopelvic stabilisation: a motor control approach for the treatment and prevention of low back pain. Edinburgh: Churchill Livingstone; 2004