Orthotics in Cerebral Palsy


Introduction[edit | edit source]

Why are the interdisciplinary team members convinced to use the orthoses as part of the treatment plan? Because of the comprehensive understanding of the CP patients, concentrating on the function limitations has a great effect on the new range of improved designs of orthoses to improve the outcome for the benefit of the patient.
In 1994 during the consensus conference held in Duke University, ISPO identifies the goals of the lower limb orthotic management of CP. The identified goals can also be applied in postural impairments of the trunk and upper limbs.
⦁ To correct and/or prevent deformity
⦁ To provide a base of support
⦁ To facilitate training in skills
⦁ To improve the efficiency of gait
It is important that the interdisciplinary team check the patient’s functional limitations according to the GMFCS in order to plan the treatment. The type and design of the orthosis is decided accordingly and can be changed periodically depending on the improvement of the patient condition.

Orthotics management[edit | edit source]

Under the International Standard terminology, orthoses are classified by an acronym describing the anatomical joints which they contain. For example, an ankle foot orthosis ('AFO') is applied to the foot and ankle, a thoracolumbosacral orthosis ('TLSO') affects the thoracic, lumbar and sacral regions of the spine. It is also useful to describe the function of the orthosis.
Types of orthoses which can be used for CP patients are:
Foot orthoses (FO)
Foot orthotics do not prevent deformity. They provide a better contact of the sole of the foot with the ground.

Supramalleoler orthosis (SMO)[edit | edit source]

This orthosis extends to just above the malleoli and to the toes. Consider in mild dynamic equinus, varus and valgus instability.



University of California Biomechanics Laboratory Orthosis (UCBL)
The medial side is higher than the lateral, holds the calcaneus more firmly, supports the longitudinal arch. Prescribed for hind and midfoot instability.

Ankle Foot Orthoses (AFO)[edit | edit source]

The AFO is the basic orthosis in CP and is a crucial piece of equipment for many children with spastic diplegia. The main function of the AFO is to maintain the foot in a plantigrade position. This provides a stable base of support that facilitates the function and also reduces tone in the stance phase of the gait. The AFO supports the foot and prevents drop foot during swing phase. If worn at night, a rigid AFO may prevent contracture. AFOs provide a more energy efficient gait. The brace should be simple, light but strong. It should be easy to use. Most importantly it should provide and increase functional independence.
There are various types of the AFO.

Solid AFO [edit | edit source]

The solid or rigid AFO allows no ankle motion, it covers the back of the leg completely and extends from just below the fibular head to metatarsal heads. The solid AFO enables heel strike in the stance phase and toe clearance in the swing phase. It can improve knee stability in ambulatory children. It also provides control of varus/ valgus deformity. Solid AFOs provides ankle stability in the standing frame in non-ambulatory children.

Posterior leaf spring AFO[edit | edit source]

A PLSO is a rigid AFO trimmed behind the malleoli’s to provide flexibility at the ankle and allows passive ankle dorsiflexion during the stance phase. A PLSO provides smoother knee-ankle motion during walking while preventing excessive ankle dorsiflexion Varus-valgus control is also poor because it is repeatedly deformed during weight bearing. A PLSO is an ideal choice in mild spastic equinus. Do not use it with patients who have crouch gait and pes valgus.

GRAFO or FRO (Ground reaction or floor reaction AFO) [edit | edit source]

This AFO is made with a solid ankle, the upper portion wraps around the anterior part of the tibia proximally with a solid front over the tibia. The rigid front provide strong ground reaction support for patients with weak triceps surae. The foot plate extends to the toes. The ankle may be set in slight plantar flexion of (2-3 degrees) if more corrective force at the knee is necessary. Use the GRAFO in patients with quadriceps weakness or crouch gait. It is an excellent brace for patients with weak triceps surae following hamstring lengthening. Children with static or dynamic knee flexion contractures (more than 15 degrees) do not get benefit out of it and do not tolerate the GRAFO.


Anti-recurvatum AFO
[edit | edit source]

This special AFO is molded in slight dorsiflexion or has the heel built up slightly to push the tibia forward to prevent hyperextension during stance phase. Consider prescribing this AFO for the treatment of genu recurvatum in hemiplegic or diplegic children. Anti-recurvatum AFOs may be solid or hinged depending on the child’s tolerance.


Hinged AFO[edit | edit source]

Hinged AFOs have a mechanical ankle joint usually preventing plantar flexion, but allowing relatively full dorsiflexion during the stance phase of gait. They provide a more normal gait because they permit dorsiflexion in stance phase of the gait, thus making it easier to walk on uneven surfaces and stairs. This is the best AFO for most ambulatory patients. Adjust the plantar flexion stop in (3- 7 degrees) dorsiflexion to control knee hyperextension in stance in children with genu recurvatum. The hinged AFO is contraindicated in children who do not have passive dorsiflexion of the ankle because it may force the midfoot joints into dorsiflexion and cause midfoot break deformity. Knee flexion contractures and triceps weakness are other contraindications where a hinged AFO may increase crouch gait.

The AFO may be fitted with a hinge that allows 10 degrees passive
dorsiflexion while preventing plantar flexion. This creates a more
natural gait

Knee orthoses[edit | edit source]

Knee orthoses are used as resting splints in the early postoperative period and during therapeutic ambulation. There are two types of knee orthoses, the knee immobilizer and the plastic knee-ankle foot orthosis (KAFO). The use of such splints protects the knee joint, prevents deformity recurrence after multilevel lengthening and enables a safer start to weight bearing and ambulation after surgery.
Knee immobilizers
Knee immobilizers are made of soft elastic material and hold only the knee joint in extension, leaving the ankle joint free. Consider using them in the early postoperative period after hamstring surgery and rectus tendon transfers.


Consider the knee immobilizer after hamstring surgery.

Plastic KAFOs[edit | edit source]

Plastic resting KAFOs extend from below the hips to the toes and stabilize the ankle joint as well as the knee. They are more rigid and provide better support to the ankle and the knee in the early postoperative phase. Knee-ankle-foot orthoses with metal uprights and hinged joints (KAFOs) were developed and used extensively in the 1950s and 60s for children with poliomyelitis. Though KAFOs are still used for ambulation in poliomyelitis and myelomeningocele where there is a need to lock the knee joint, they are not useful for the child with CP because they disturb the gait pattern by locking the knee in extension in the swing phase. Donning the KAFO on and off takes a lot of time and they are difficult to wear. For these reasons, KAFOs for functional ambulation have disappeared from use in children with CP. Use anti recurvatum AFOs or GRAFOs for knee problems in ambulatory children.


Use the plastic KAFO at night and in the early postoperative period after
Multi-level surgery to protect the extremity while allowing early mobilization.


Hip abduction orthoses[edit | edit source]

Consider using hip abduction orthoses in children with hip adductor tightness to protect hip range of motion and prevent the development of subluxation. One clear indication for hip abduction orthoses is the early period after adductor lengthening.

Spinal orthoses[edit | edit source]

There are various types of braces used for spinal deformity. This braces are not prescribed in order to stop the progression of scoliosis but to provide better sitting balance. As most children with scoliosis need spinal surgery to establish and maintain sitting balance in the long run. A thoraco-lumbo-sacral brace helps the child to sit better during the growth spurt period when spinal deformity becomes apparent, progresses fast and the child out grows custom molded seating devices quickly. Children who are not candidates for surgery for different reasons may use spinal braces instead of seating devices for better sitting.


Upper extremity bracing[edit | edit source]

The indications of bracing in the shoulder and elbow are very limited. An example of a resting splint is a thermoplastic resting wrist and hand splint which keeps the wrist in 10-20 degrees extension, the metacarpal phalangeal joint(MPJ) in 60 degrees flexion and the interphalangeal joint( IPJ) in extension. This type of splint is used at night and during periods of inactivity with the hope of preventing deformity. An example of a functional splint is an opponents splint, which can be used in everyday activities. Hand orthoses may inhibit the active use of the extremity and effect sensation of the hand in a negative way. Use them only in the therapy setting or at school and take them off during other times in the day.

Resting Hand Splint Copy right Smith& Nephew


Functional Hand splint copy right Smith & Nephew
These are the most known type of orthoses used in one stage of the CP treatment plan, bearing in mind with CP a periodical orthosis assessment has to be done in order to decide if there is a need for changing the design or type.



⦁ The HELP Guide to Cerebral Palsy, by: Nadrie Breker, Selim Yalcin. Pages 47-51.
⦁ Orthotic Management of Children with Cerebral Palsy, By: Christopher Morris, MSc, SR Orth. JPO, 2002 Vol. 14, Num. 4, pp.150-158.
⦁ ISPO Report of consensus on lower limb orthotics management of Cerebral Palsy. Nov. 1994, edited by: David N. Condie& Barry Meadows.