Mozilla Skin

Guillain-Barre Syndrome

From Physiopedia

Original Editor -Nitisha Sethi
Top Contributors -

Rachael Lowe, Nitisha Sethi and Wendy Walker



Guillain Barre Syndrome(ghee-yan-bar syndrome) is a reactive self limited auto immune disease which presents as acute generalized weakness.

It is referred to as syndrome because it represents a broad group of demyelinating inflammatory poly radiculo-neuropathies.

GBS can also be classified into following category
1. AIDP (Acute inflammatory demyelinating polyneuropathy)
2. Axonal can be further classified into:  

i. Acute motor axonal neuropathy (AMAN) 

ii. Acute motor sensory axonal neuropathy (AMSAN)                                                                                                                                  3. Miller Fisher Syndrome

GBS is a classic lower motor neuron disorder. It occurs as an auto immune response following vaccination, viral infection or respiratory infection.

Epidemiology affects all ages with a male preponderance. Children are left affected than adults.


The pathophysiology of GBS is complex as it involves autoimmune responses. The immune responses causes a cross reaction with the neural tissue. When myelin is destroyed, destruction is accompanied by inflammation. These acute inflammatory lesions are present within several days of the onset of symptoms.

Nerve conduction is slowed and may be blocked completely. Even though the Schwann cells that produce myelin in the peripheral nervous system are destroyed, the axons are left intact in all but the most severe cases. After 2-3 weeks of demyelination, the Schwann cells begin to proliferate, inflammation subsides, and re-myelination begins.

While GBS is the most common cause of acute paralysis, the exact pathogenesis is still unclear. The progression of demyelination appears different in AMAN type of GBS versus AIDP type. Nadir is the point of greatest severity and patients with AMAN type reach it earlier.

Clinical Presentation

a. “Typical” GBS is an acute, predominantly motor neuropathy involving distal limb paresthesias, relatively symmetric leg weakness, and frequent gait ataxia.

i. Most cases will have subsequent arm weakness, and possibly weakness of facial, ocular, and oropharyngeal muscles.

b. Weakness is always bilateral, although some asymmetry in onset and severity is common.
i. Proximal muscles weakness very frequent, especially initially, with subsequent distal arm and leg weakness.
ii. GBS with a descending pattern of weakness seen in 14% cases; onset initially with cranial nerve or arm muscle weakness,followed by leg weakness.
iii. In 1/3 of cases, the degree of weakness in the arms and legs is roughly equal.

c. Reduced or absent reflexes characterize GBS.
i. Early loss of reflexes may be due to desynchronization of afferent impulses in reflex arc due to non-uniform demyelination.
ii. About 70% of patients present with loss of reflexes; less than 5% retained all reflexes during the illness;
iii. The presence of intact reflexes should suggest an alternative diagnosis other than GBS.

d. Sensory disturbance
i. >50% will present with symmetric distal limb paresthesias, before clinically evident limb weakness. Early finger paresthesias suggest a patchy process, unlike the pattern seen with distal axonopathies.
ii. paresthesias of trunk or face unusual, but sensory loss over the trunk frequent and a psuedolevel may be evident
iii. beware if definite sensory level present as this may suggest structural cord disease

e. Dysautonomia
i. occurs in about 65% of cases
ii. more frequent in patients with severe paralysis and ventilator difficulties but may develop in mild cases.
iii. Most common manifestations include cardiac dysfunction such as sinus tachycardia, sinus bradycardia, sinus arrest and other supraventricular arrhythmias, paroxysmal hypertension, and hypotension (especially postural),
iv. ICU monitoring necessary because of possible cardiac complications.
v. Other features: ileus, urinary retention (1/4 cases), inappropriate ADH, altered sweating, mild orthostatic hypotension.

Diagnostic Procedures

They can be done as follows:
a. Cerebrospinal fluid investigation : It will elevated at some stage of the illness but remains normal during the first 10 days. There may be lymphocytosis (> 50000000 cells/L).

b. Electrophysiological studies : it includes nerve conduction studies and electromyography. They are normal in the early stages but show typical changes after a week or so with conduction block and multifocal motor slowing, sometimes most evident proximally as delayed F-waves.
The only way to classify a patient as having the axonal or nanaxonal type is electrodiagnostically.

c. Further investigative procedures can be undertaken to identify an underlying cause
For example:
i. Chest X-ray , stool culture and appropriate immunological tests to rule out the presence of cytomegalovirus or mycoplasma
ii. Antibodies to the ganglioside GQ1b for miller fisher variant.

Outcome Measures

add links to outcome measures here (see Outcome Measures Database)

Management / Interventions

The mainstay of medical management of patients with GBS is
a) Plasmapheresis
b) Intravenous immunoglobulins ( I.V.I.G)

In plasmapheresis, blood is removed from the body, the red and white blood cells are separated from the plasma and only the blood cells are returned to the patient. It is thought that removing the plasma eliminates some of the immune factors that are responsible for the disease progression. Plasmapheresis helps in following ways:
a) Reducing the length of the illness
b) Shortened time on mechanical ventilation
c) Early ambulation

In I.V.I.G, immunoglobulins are given intravenously which shows a positive impact on the speed of recovery. But it has been shown to be less effective than plasmapheresis.

Further medical management can be done according to the symptoms and the complications :
a. Supportive Care
i. ICU monitoring
ii. Basic medical management often determines mortality and morbidity.

b. Ventilatory Support
i. Atelectasis leads to hypoxia.
ii. Hyper-carbia later finding; arterial blood cases may be misleading.
iii. Vidal capacity, tidal volume and negative inspiratory force are best indicators of diaphragmatic function.
iv. Progressive decline of these functions indicate an impending need or ventilatory assistance.
1. mechanical ventilation usually required if VC drops below about 14 ml/kg; ultimate risk depending on age, presence of accompanying lung disease, aspiration risk, and assessment of respiratory muscle fatigue.
v. Atelectasis treated initially by incentive spirometry, frequent suctioning, and chest physiotherapy to mobilize secretions.
vi. Intubation may be necessary in patients with substantial oro-pharyngeal dysfunction to prevent aspiration.
vii. Tracheostomy may be needed in patients intubated for 2 weeks who do not show improvement.

c. Autonomic dysfunction
i. Autonomic dysfunction may be self-limited; do not over-treat.
ii. Sustained hypertension managed by angiotensin-converting enzyme inhibitor or beta blocking agent. Use short acting intravenous medication for labile hypertension requiring immediate therapy.
iii. Postural hypotension treated with fluid bolus or positioning.
iv. Urinary difficulties may require intermittent catheterization.

d. Nosocomial infections usually involve pulmonary and urinary tracts.
i. Occasionally central venous catheters become infected.
ii. Antibiotic therapy should be reserved for those patients showing clinical infection rather than colonization of fluid or sputum specimens.

e. Venous thrombosis due to immobilization poses great risk of thromboembolism.


Aims of the treatment are to
1. Maintain clear airways
2. Prevent lung infection
3. Maintain anatomical joint range
4. Support joint in functional position to minimize damage or deformity
5. Prevention of pressure sores
6. Maintain peripheral circulation
7. Provide psychological support for the patient and relatives.

1. Maintenance of clear airway & prevention of lung infection :
a) The patients breathing will be assisted by intermittent positive pressure ventilation (IPPV) via a cuffed tracheostomy tube.
b) Posturally drain areas of lung tissues, 2-hourly turning into supine or side lying positions.
c) A suction catheter is used to remove secretions from respective passage until the cough reflex re-appears.
d) Manual techniques like vibration with/ without over pressure.
e) 2-4 litre anesthetic bag can be used to enhance chest expansion. Therefore , 2 people are necessary for this technique, one to squeeze the bag and another to apply chest manipulation.
f) Rib springing to stimulate cough.
g) After the removal of ventilator and adequate expansion, effective coughing must be taught to the patient
h) As neurons recover, active assisted or active breathing exercises may commence with good amount of relaxing time.

2. To maintain normal joint movement :
Gentle passive movements through full ROM at least three times a day especially at hip , shoulder, wrist, ankle, feet.

3. Support joints :
Use of light splints using PLASTAZOTE is required for following purpose listed below:
a) Support the peripheral joints in comfortable and functional position during flaccid paralysis.
b) To prevent abnormal movements.
c) To stabilize patients using sandbags, pillows.

4. Prevention of pressure sores :
2- hourly change in patients position from supine to side lying. If the sores have developed then UVR or ice cube massage to enhance healing.

5. Maintenance of circulation:
a) Passive movements
b) Effleurage massage to lower limbs.

6. Relief of pain:
a) Transcutaneous electrical nerve stimulation
b) Massage with passive ROM
c) Patient can demonstrate increased sensitivity to light touch, a cradle can be used to keep the bed sheet away from the skin.
d) Low pressure wrapping or snug fitting garments can provide a way to avoid light touch.
e) Reassurance and explanation of what to expect can help in alleviation of anxiety that could compound the pain.

Exercises to be prescribed to the patient should be started with low repetitions and short, frequent bouts of exercises matched to the patients muscular strength. According to Bensman (1970), the following four guidelines are to be followed for prescription of exercises:
a) Use short periods of non-fatiguing exercises matched to the patients strength.
b) Progression of the exercise should be done only if the patient improves or if there is no deterioration in status after a week.
c) Return the patient to bed rest if a decrease in muscle strength or function occurs.
d) The objective should be directed towards not only at improving function but also in improving strength.

Differential Diagnosis

a. Acute peripheral neuropathies
i. Toxic: thallium, arsenic, lead, n-hexane, organophosphate
ii. Drugs: amiodarone, perhexiline, gold
iii. Alcohol
iv. Porphyria
v. Systemic vasculitis
vi. Poliomyelitis
vii. Diphtheria
viii. Tick paralysis
ix. Critical illness polyneuropathy

b. Disorders of Neuromuscular Transmission
i. Botulism
ii. Myasthenia gravis

c. Central Nervous System Disorders
i. Basilar artery occlusion
ii. Acute cervical transverse myelitis

Key Evidence

add text here relating to key evidence with regards to any of the above headings


a) Pain and the Guillain-Barre ́ syndrome in children under 6 years old Dang Khoa Nguyen, MD Stacey Agenarioti-Bélanger, MD, Michel Vanasse, MD, FRCP(C)

b) Guillain barre syndrome pathophysiology

c) Hand therapy for guillain barre syndrome patients

d) Campylobacter jejuni Infection and Guillain–Barré Syndrome Jeremy H. Rees, Ph.D., M.R.C.P., Sara E. Soudain, B.Sc., Norman A. Gregson, Ph.D., and Richard A.C. Hughes, M.D. N Engl J Med 1995; 333:1374-1379November 23, 1995DOI: 10.1056/NEJM199511233332102

e) Guillain‐Barré syndrome Management of respiratory failure Allan H. Ropper, MD and Susan M. Kehne, MD

f) Karni Y, Archdeacon L, Mills KR, et al. Clinical assessment and physiotherapy in Guillain-Barre syndrome . Physiotherapy 70(8): 288-292, 1984.

g) Hahn AF. Guillain-Barre syndrome. Lancet 352(9128):635-641, 1998.

h) Hiraga A, Mori M, Ogawara K, et al. Differences in patterns of progression in demyelinating and axonal Guillain-Barre syndromes. Neurology 61(4);471-474, 2003.

Case Studies

add links to case studies here (case studies should be added on new pages using the case study template)


References will automatically be added here, see adding references tutorial.

Breathing Disorders and Respiratory Muscle Training

In this month's Members topic we explore the topics of breathing dysfunction and the training of respiratory muscles with exclusive access to:

  1. 2 FREE chapters from the new book Recognizing and Treating Breathing Disorders
  2. 2 FREE chapters from the new book Respiratory Muscle Training
  3. 3 FREE journal articles from Manual therapy and J. of Bodywork and Mov. Therapies
  4. Interviews with topic experts Leon Chaitow and Alison McConnell
  5. 2 quizzes to test your knowledge on breathing disorders and respiratory training

Join and learn...